An obstruction to homogeneous manifolds being Kähler

Bruce Gilligan[1]

  • [1] University of Regina, department of Mathematics and Statistics , Regina, S4S 0A2 (Canada)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 1, page 229-241
  • ISSN: 0373-0956

Abstract

top
Let G be a connected complex Lie group, H a closed, complex subgroup of G and X : = G / H . Let R be the radical and S a maximal semisimple subgroup of G . Attempts to construct examples of noncompact manifolds X homogeneous under a nontrivial semidirect product G = S R with a not necessarily G -invariant Kähler metric motivated this paper. The S -orbit S / S H in X is Kähler. Thus S H is an algebraic subgroup of S [4]. The Kähler assumption on X ought to imply the S -action on the base Y of any homogeneous fibration X Y is algebraic too. Natural considerations allow a reduction to the case where H = Γ is a discrete subgroup and there is a homogeneous fibration X = G / Γ G / I = : Y with I an abelian, normal subgroup of G and the fiber I / ( I Γ ) a Cousin group. An algebraic condition does hold in the homogeneous manifold Y = G ^ / Γ ^ , where G ^ : = G / I and Γ ^ : = I / I , namely, an element g ^ Γ ^ of infinite order lying in a semisimple subgroup S ^ of G ^ is an obstruction to the existence of a Kähler metric on X . So X Kähler implies S ^ Γ ^ finite.

How to cite

top

Gilligan, Bruce. "An obstruction to homogeneous manifolds being Kähler." Annales de l’institut Fourier 55.1 (2005): 229-241. <http://eudml.org/doc/116187>.

@article{Gilligan2005,
abstract = {Let $G$ be a connected complex Lie group, $H$ a closed, complex subgroup of $G$ and $X:=G/H$. Let $R$ be the radical and $S$ a maximal semisimple subgroup of $G$. Attempts to construct examples of noncompact manifolds $X$ homogeneous under a nontrivial semidirect product $G=S \ltimes R$ with a not necessarily $G$-invariant Kähler metric motivated this paper. The $S$-orbit $S/S\cap H$ in $X$ is Kähler. Thus $S\cap H$ is an algebraic subgroup of $S$ [4]. The Kähler assumption on $X$ ought to imply the $S$-action on the base $Y$ of any homogeneous fibration $X \rightarrow Y$ is algebraic too. Natural considerations allow a reduction to the case where $H=\Gamma $ is a discrete subgroup and there is a homogeneous fibration $X=G/\Gamma \rightarrow G/I =:Y$ with $I^\{\circ \}$ an abelian, normal subgroup of $G$ and the fiber $I^\{\circ \}/(I^\{\circ \}\cap \Gamma )$ a Cousin group. An algebraic condition does hold in the homogeneous manifold $Y=\hat\{G\}/\hat\{\Gamma \}$, where $\hat\{G\}:=G/I^\{\circ \}$ and $\hat\{\Gamma \}:=I/I^\{\circ \}$, namely, an element $\hat\{g\}\in \hat\{\Gamma \}$ of infinite order lying in a semisimple subgroup $\hat\{S\}$ of $\hat\{G\}$ is an obstruction to the existence of a Kähler metric on $X$. So $X$ Kähler implies $\hat\{S\}\cap \hat\{\Gamma \}$ finite.},
affiliation = {University of Regina, department of Mathematics and Statistics , Regina, S4S 0A2 (Canada)},
author = {Gilligan, Bruce},
journal = {Annales de l’institut Fourier},
keywords = {homogeneous complex manifolds; Kähler manifolds},
language = {eng},
number = {1},
pages = {229-241},
publisher = {Association des Annales de l'Institut Fourier},
title = {An obstruction to homogeneous manifolds being Kähler},
url = {http://eudml.org/doc/116187},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Gilligan, Bruce
TI - An obstruction to homogeneous manifolds being Kähler
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 1
SP - 229
EP - 241
AB - Let $G$ be a connected complex Lie group, $H$ a closed, complex subgroup of $G$ and $X:=G/H$. Let $R$ be the radical and $S$ a maximal semisimple subgroup of $G$. Attempts to construct examples of noncompact manifolds $X$ homogeneous under a nontrivial semidirect product $G=S \ltimes R$ with a not necessarily $G$-invariant Kähler metric motivated this paper. The $S$-orbit $S/S\cap H$ in $X$ is Kähler. Thus $S\cap H$ is an algebraic subgroup of $S$ [4]. The Kähler assumption on $X$ ought to imply the $S$-action on the base $Y$ of any homogeneous fibration $X \rightarrow Y$ is algebraic too. Natural considerations allow a reduction to the case where $H=\Gamma $ is a discrete subgroup and there is a homogeneous fibration $X=G/\Gamma \rightarrow G/I =:Y$ with $I^{\circ }$ an abelian, normal subgroup of $G$ and the fiber $I^{\circ }/(I^{\circ }\cap \Gamma )$ a Cousin group. An algebraic condition does hold in the homogeneous manifold $Y=\hat{G}/\hat{\Gamma }$, where $\hat{G}:=G/I^{\circ }$ and $\hat{\Gamma }:=I/I^{\circ }$, namely, an element $\hat{g}\in \hat{\Gamma }$ of infinite order lying in a semisimple subgroup $\hat{S}$ of $\hat{G}$ is an obstruction to the existence of a Kähler metric on $X$. So $X$ Kähler implies $\hat{S}\cap \hat{\Gamma }$ finite.
LA - eng
KW - homogeneous complex manifolds; Kähler manifolds
UR - http://eudml.org/doc/116187
ER -

References

top
  1. Y. Abe, K. Kopfermann, Toroidal groups. Line bundles, cohomology and quasi-abelian varieties, 1759 (2001), Springer-Verlag, Berlin Zbl0974.22004MR1836462
  2. D. N. Akhiezer, Invariant analytic hypersurfaces in complex nilpotent Lie groups, Ann. Global Anal. Geom. 2 (1984), 129-140 Zbl0576.32039MR777904
  3. D. N. Akhiezer, B. Gilligan, On complex homogeneous spaces with top homology in codimension two, Canad. J. Math. 46 (1994), 897-919 Zbl0812.32013MR1295122
  4. F. Berteloot, K. Oeljeklaus, Invariant plurisubharmonic functions and hypersurfaces on semi-simple complex Lie groups, Math. Ann. 281 (1988), 513-530 Zbl0653.32029MR954156
  5. A. Borel, R. Remmert, Über kompakte homogene Kählersche Mannigfaltigkeiten, Math. Ann. 145 (1962), 429-439 Zbl0111.18001MR145557
  6. P. Cousin, Sur les fonctions triplement périodiques de deux variables, Acta Math. 33 (1910), 105-232 Zbl41.0492.02
  7. J. Dorfmeister, K. Nakajima, The fundamental conjecture for homogeneous Kähler manifolds, Acta Math. 161 (1988), 23-70 Zbl0662.32025MR962095
  8. B. Gilligan, Invariant analytic hypersurfaces in complex Lie groups, Bull. Austral. Math. Soc. 70 (2004), 343-349 Zbl1072.32011MR2094781
  9. B. Gilligan, A. Huckleberry, On non-compact complex nil-manifolds, Math. Ann. 238 (1978), 39-49 Zbl0405.32009MR510305
  10. B. Gilligan, K. Oeljeklaus, W. Richthofer, Homogeneous complex manifolds with more than one end, Canad. J. Math. 41 (1989), 163-177 Zbl0667.32022MR996723
  11. G. Hochschild, G.D. Mostow, On the algebra of representative functions of an analytic group, II, Amer. J. Math. 86 (1964), 869-887 Zbl0152.01301MR200392
  12. A.T. Huckleberry, E. Oeljeklaus, On holomorphically separable complex solvmanifolds, Ann. Inst. Fourier (Grenoble) 36 (1986), 57-65 Zbl0571.32012MR865660
  13. Y. Matsushima, On the discrete subgroups and homogeneous spaces of nilpotent Lie groups, Nagoya Math. J. 2 (1951), 95-110 Zbl0045.31002MR41144
  14. A. Morimoto, Non-compact complex Lie groups without non-constant holomorphic functions, (1964), 256-272, Minneapolis Zbl0144.07902
  15. K. Oeljeklaus, Hyperflächen und Geradenbündel auf homogenen komplexen Mannigfaltigkeiten, (1985) Zbl0594.32032MR819480
  16. K. Oeljeklaus, W. Richthofer, On the structure of complex solvmanifolds, J. Differential Geom. 27 (1988), 399-421 Zbl0619.32021MR940112
  17. K. Oeljeklaus, W. Richthofer, Recent results on homogeneous complex manifolds, Complex Analysis III, 1277 (1987), 78-119, Berlin Zbl0627.32026
  18. M.S. Raghunathan, Discrete subgroups of Lie groups, (1972), New York Zbl0254.22005MR507234

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.