An obstruction to homogeneous manifolds being Kähler
- [1] University of Regina, department of Mathematics and Statistics , Regina, S4S 0A2 (Canada)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 1, page 229-241
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGilligan, Bruce. "An obstruction to homogeneous manifolds being Kähler." Annales de l’institut Fourier 55.1 (2005): 229-241. <http://eudml.org/doc/116187>.
@article{Gilligan2005,
abstract = {Let $G$ be a connected complex Lie group, $H$ a closed, complex subgroup of $G$ and
$X:=G/H$. Let $R$ be the radical and $S$ a maximal semisimple subgroup of $G$. Attempts
to construct examples of noncompact manifolds $X$ homogeneous under a nontrivial
semidirect product $G=S \ltimes R$ with a not necessarily $G$-invariant Kähler metric
motivated this paper. The $S$-orbit $S/S\cap H$ in $X$ is Kähler. Thus $S\cap H$ is an
algebraic subgroup of $S$ [4]. The Kähler assumption on $X$ ought to imply the $S$-action
on the base $Y$ of any homogeneous fibration $X \rightarrow Y$ is algebraic too. Natural
considerations allow a reduction to the case where $H=\Gamma $ is a discrete subgroup and
there is a homogeneous fibration $X=G/\Gamma \rightarrow G/I =:Y$ with $I^\{\circ \}$ an abelian,
normal subgroup of $G$ and the fiber $I^\{\circ \}/(I^\{\circ \}\cap \Gamma )$ a Cousin group. An
algebraic condition does hold in the homogeneous manifold $Y=\hat\{G\}/\hat\{\Gamma \}$, where
$\hat\{G\}:=G/I^\{\circ \}$ and $\hat\{\Gamma \}:=I/I^\{\circ \}$, namely, an element
$\hat\{g\}\in \hat\{\Gamma \}$ of infinite order lying in a semisimple subgroup $\hat\{S\}$ of
$\hat\{G\}$ is an obstruction to the existence of a Kähler metric on $X$. So $X$ Kähler
implies $\hat\{S\}\cap \hat\{\Gamma \}$ finite.},
affiliation = {University of Regina, department of Mathematics and Statistics , Regina, S4S 0A2 (Canada)},
author = {Gilligan, Bruce},
journal = {Annales de l’institut Fourier},
keywords = {homogeneous complex manifolds; Kähler manifolds},
language = {eng},
number = {1},
pages = {229-241},
publisher = {Association des Annales de l'Institut Fourier},
title = {An obstruction to homogeneous manifolds being Kähler},
url = {http://eudml.org/doc/116187},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Gilligan, Bruce
TI - An obstruction to homogeneous manifolds being Kähler
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 1
SP - 229
EP - 241
AB - Let $G$ be a connected complex Lie group, $H$ a closed, complex subgroup of $G$ and
$X:=G/H$. Let $R$ be the radical and $S$ a maximal semisimple subgroup of $G$. Attempts
to construct examples of noncompact manifolds $X$ homogeneous under a nontrivial
semidirect product $G=S \ltimes R$ with a not necessarily $G$-invariant Kähler metric
motivated this paper. The $S$-orbit $S/S\cap H$ in $X$ is Kähler. Thus $S\cap H$ is an
algebraic subgroup of $S$ [4]. The Kähler assumption on $X$ ought to imply the $S$-action
on the base $Y$ of any homogeneous fibration $X \rightarrow Y$ is algebraic too. Natural
considerations allow a reduction to the case where $H=\Gamma $ is a discrete subgroup and
there is a homogeneous fibration $X=G/\Gamma \rightarrow G/I =:Y$ with $I^{\circ }$ an abelian,
normal subgroup of $G$ and the fiber $I^{\circ }/(I^{\circ }\cap \Gamma )$ a Cousin group. An
algebraic condition does hold in the homogeneous manifold $Y=\hat{G}/\hat{\Gamma }$, where
$\hat{G}:=G/I^{\circ }$ and $\hat{\Gamma }:=I/I^{\circ }$, namely, an element
$\hat{g}\in \hat{\Gamma }$ of infinite order lying in a semisimple subgroup $\hat{S}$ of
$\hat{G}$ is an obstruction to the existence of a Kähler metric on $X$. So $X$ Kähler
implies $\hat{S}\cap \hat{\Gamma }$ finite.
LA - eng
KW - homogeneous complex manifolds; Kähler manifolds
UR - http://eudml.org/doc/116187
ER -
References
top- Y. Abe, K. Kopfermann, Toroidal groups. Line bundles, cohomology and quasi-abelian varieties, 1759 (2001), Springer-Verlag, Berlin Zbl0974.22004MR1836462
- D. N. Akhiezer, Invariant analytic hypersurfaces in complex nilpotent Lie groups, Ann. Global Anal. Geom. 2 (1984), 129-140 Zbl0576.32039MR777904
- D. N. Akhiezer, B. Gilligan, On complex homogeneous spaces with top homology in codimension two, Canad. J. Math. 46 (1994), 897-919 Zbl0812.32013MR1295122
- F. Berteloot, K. Oeljeklaus, Invariant plurisubharmonic functions and hypersurfaces on semi-simple complex Lie groups, Math. Ann. 281 (1988), 513-530 Zbl0653.32029MR954156
- A. Borel, R. Remmert, Über kompakte homogene Kählersche Mannigfaltigkeiten, Math. Ann. 145 (1962), 429-439 Zbl0111.18001MR145557
- P. Cousin, Sur les fonctions triplement périodiques de deux variables, Acta Math. 33 (1910), 105-232 Zbl41.0492.02
- J. Dorfmeister, K. Nakajima, The fundamental conjecture for homogeneous Kähler manifolds, Acta Math. 161 (1988), 23-70 Zbl0662.32025MR962095
- B. Gilligan, Invariant analytic hypersurfaces in complex Lie groups, Bull. Austral. Math. Soc. 70 (2004), 343-349 Zbl1072.32011MR2094781
- B. Gilligan, A. Huckleberry, On non-compact complex nil-manifolds, Math. Ann. 238 (1978), 39-49 Zbl0405.32009MR510305
- B. Gilligan, K. Oeljeklaus, W. Richthofer, Homogeneous complex manifolds with more than one end, Canad. J. Math. 41 (1989), 163-177 Zbl0667.32022MR996723
- G. Hochschild, G.D. Mostow, On the algebra of representative functions of an analytic group, II, Amer. J. Math. 86 (1964), 869-887 Zbl0152.01301MR200392
- A.T. Huckleberry, E. Oeljeklaus, On holomorphically separable complex solvmanifolds, Ann. Inst. Fourier (Grenoble) 36 (1986), 57-65 Zbl0571.32012MR865660
- Y. Matsushima, On the discrete subgroups and homogeneous spaces of nilpotent Lie groups, Nagoya Math. J. 2 (1951), 95-110 Zbl0045.31002MR41144
- A. Morimoto, Non-compact complex Lie groups without non-constant holomorphic functions, (1964), 256-272, Minneapolis Zbl0144.07902
- K. Oeljeklaus, Hyperflächen und Geradenbündel auf homogenen komplexen Mannigfaltigkeiten, (1985) Zbl0594.32032MR819480
- K. Oeljeklaus, W. Richthofer, On the structure of complex solvmanifolds, J. Differential Geom. 27 (1988), 399-421 Zbl0619.32021MR940112
- K. Oeljeklaus, W. Richthofer, Recent results on homogeneous complex manifolds, Complex Analysis III, 1277 (1987), 78-119, Berlin Zbl0627.32026
- M.S. Raghunathan, Discrete subgroups of Lie groups, (1972), New York Zbl0254.22005MR507234
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.