Periodic billiard orbits in right triangles

Serge Troubetzkoy[1]

  • [1] Institut de mathématiques de Luminy, Centre de physique théorique, Case 907, 13288 Marseille cedex 9 (France)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 1, page 29-46
  • ISSN: 0373-0956

Abstract

top
There is an open set of right triangles such that for each irrational triangle in this set (i) periodic billiards orbits are dense in the phase space, (ii) there is a unique nonsingular perpendicular billiard orbit which is not periodic, and (iii) the perpendicular periodic orbits fill the corresponding invariant surface.

How to cite

top

Troubetzkoy, Serge. "Periodic billiard orbits in right triangles." Annales de l’institut Fourier 55.1 (2005): 29-46. <http://eudml.org/doc/116190>.

@article{Troubetzkoy2005,
abstract = {There is an open set of right triangles such that for each irrational triangle in this set (i) periodic billiards orbits are dense in the phase space, (ii) there is a unique nonsingular perpendicular billiard orbit which is not periodic, and (iii) the perpendicular periodic orbits fill the corresponding invariant surface.},
affiliation = {Institut de mathématiques de Luminy, Centre de physique théorique, Case 907, 13288 Marseille cedex 9 (France)},
author = {Troubetzkoy, Serge},
journal = {Annales de l’institut Fourier},
keywords = {Polygonal billiard; periodic orbits; symmetries},
language = {eng},
number = {1},
pages = {29-46},
publisher = {Association des Annales de l'Institut Fourier},
title = {Periodic billiard orbits in right triangles},
url = {http://eudml.org/doc/116190},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Troubetzkoy, Serge
TI - Periodic billiard orbits in right triangles
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 1
SP - 29
EP - 46
AB - There is an open set of right triangles such that for each irrational triangle in this set (i) periodic billiards orbits are dense in the phase space, (ii) there is a unique nonsingular perpendicular billiard orbit which is not periodic, and (iii) the perpendicular periodic orbits fill the corresponding invariant surface.
LA - eng
KW - Polygonal billiard; periodic orbits; symmetries
UR - http://eudml.org/doc/116190
ER -

References

top
  1. M. Boshernitzan, Billiards and rational periodic directions in polygons, Amer. Math. Monthly 99 (1992), 522-529 Zbl0776.58034MR1166001
  2. M. Boshernitzan, G. Galperin, T. Krüger, S. Troubetzkoy, Periodic billiard orbits are dense in rational polygons, Trans. AMS 350 (1998), 3523-3535 Zbl0910.58013MR1458298
  3. B. Cipra, R. Hanson, A. Kolan, Periodic trajectories in right triangle billiards, Phys. Rev. E52 (1995), 2066-2071 MR1388476
  4. G. Galperin, Non-periodic and not everywhere dense billiard trajectories in convex polygons and polyhedrons, Comm. Math. Phys. 91 (1983), 187-211 Zbl0529.70001MR723547
  5. G. Galperin, A. Stepin, Ya. Vorobets, Periodic billiard trajectories in polygons: generating mechanisms, Russian Math. Surveys 47 (1992), 5-80 Zbl0777.58031MR1185299
  6. G. Galperin, D. Zvonkine, Periodic billiard trajectories in right triangles and right-angled tetrahedra, Regular and Chaotic Dynamics 8 (2003), 29-44 Zbl1023.37021MR1963966
  7. E. Gutkin, Billiard in polygons, Physica D19 (1986), 311-333 Zbl0593.58016MR844706
  8. E. Gutkin, Billiard in polygons: survey of recent results, J. Stat. Phys. 83 (1996), 7-26 Zbl1081.37525MR1382759
  9. E. Gutkin, S. Troubetzkoy, Directional flows and strong recurrence for polygonal billiards, Proceedings of the International Congress of Dynamical Systems (1996), 21-45, F. Ledrappier et al. eds., Montevideo, Uruguay Zbl0904.58036
  10. A. Katok, B. Hasselblatt, Encyclopedia of Mathematics and its Applications, 54 (1995), Cambridge University Press Zbl0878.58020MR1326374
  11. H. Masur, Closed trajectories of a quadratic differential with an application to billiards, Duke Math. J. 53 (1986), 307-313 Zbl0616.30044MR850537
  12. H. Masur, S. Tabachnikov, Rational billiards and flat structures, 1A (2002), 1015-1089, North-Holland Zbl1057.37034
  13. T. Ruijgrok, Periodic orbits in triangular billiards, Acta Physica Polonica B22 (1991), 955-981 
  14. J. Schmeling, S. Troubetzkoy, Inhomogeneous Diophantine approximation and angular recurrence for polygonal billiards, Math. Sb. 194 (2003), 295-309 Zbl1043.37028MR1992153
  15. S. Tabachnikov, Billiards, (1995), Soc. Math. France Zbl0833.58001MR1328336
  16. S. Troubetzkoy, Recurrence and periodic billiard orbits in polygons, Regul. Chaotic Dyn. 9 (2004), 1-12 Zbl1049.37024MR2058893

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.