Periodic billiard orbits in right triangles
- [1] Institut de mathématiques de Luminy, Centre de physique théorique, Case 907, 13288 Marseille cedex 9 (France)
 
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 1, page 29-46
 - ISSN: 0373-0956
 
Access Full Article
topAbstract
topHow to cite
topTroubetzkoy, Serge. "Periodic billiard orbits in right triangles." Annales de l’institut Fourier 55.1 (2005): 29-46. <http://eudml.org/doc/116190>.
@article{Troubetzkoy2005,
	abstract = {There is an open set of right triangles such that for each irrational triangle in this 
    set (i) periodic billiards orbits are dense in the phase space, (ii) there is a unique 
    nonsingular perpendicular billiard orbit which is not periodic, and (iii) the 
    perpendicular periodic orbits fill the corresponding invariant surface.},
	affiliation = {Institut de mathématiques de Luminy, Centre de physique théorique, Case 907, 13288 Marseille cedex 9 (France)},
	author = {Troubetzkoy, Serge},
	journal = {Annales de l’institut Fourier},
	keywords = {Polygonal billiard; periodic orbits; symmetries},
	language = {eng},
	number = {1},
	pages = {29-46},
	publisher = {Association des Annales de l'Institut Fourier},
	title = {Periodic billiard orbits in right triangles},
	url = {http://eudml.org/doc/116190},
	volume = {55},
	year = {2005},
}
TY  - JOUR
AU  - Troubetzkoy, Serge
TI  - Periodic billiard orbits in right triangles
JO  - Annales de l’institut Fourier
PY  - 2005
PB  - Association des Annales de l'Institut Fourier
VL  - 55
IS  - 1
SP  - 29
EP  - 46
AB  - There is an open set of right triangles such that for each irrational triangle in this 
    set (i) periodic billiards orbits are dense in the phase space, (ii) there is a unique 
    nonsingular perpendicular billiard orbit which is not periodic, and (iii) the 
    perpendicular periodic orbits fill the corresponding invariant surface.
LA  - eng
KW  - Polygonal billiard; periodic orbits; symmetries
UR  - http://eudml.org/doc/116190
ER  - 
References
top- M. Boshernitzan, Billiards and rational periodic directions in polygons, Amer. Math. Monthly 99 (1992), 522-529 Zbl0776.58034MR1166001
 - M. Boshernitzan, G. Galperin, T. Krüger, S. Troubetzkoy, Periodic billiard orbits are dense in rational polygons, Trans. AMS 350 (1998), 3523-3535 Zbl0910.58013MR1458298
 - B. Cipra, R. Hanson, A. Kolan, Periodic trajectories in right triangle billiards, Phys. Rev. E52 (1995), 2066-2071 MR1388476
 - G. Galperin, Non-periodic and not everywhere dense billiard trajectories in convex polygons and polyhedrons, Comm. Math. Phys. 91 (1983), 187-211 Zbl0529.70001MR723547
 - G. Galperin, A. Stepin, Ya. Vorobets, Periodic billiard trajectories in polygons: generating mechanisms, Russian Math. Surveys 47 (1992), 5-80 Zbl0777.58031MR1185299
 - G. Galperin, D. Zvonkine, Periodic billiard trajectories in right triangles and right-angled tetrahedra, Regular and Chaotic Dynamics 8 (2003), 29-44 Zbl1023.37021MR1963966
 - E. Gutkin, Billiard in polygons, Physica D19 (1986), 311-333 Zbl0593.58016MR844706
 - E. Gutkin, Billiard in polygons: survey of recent results, J. Stat. Phys. 83 (1996), 7-26 Zbl1081.37525MR1382759
 - E. Gutkin, S. Troubetzkoy, Directional flows and strong recurrence for polygonal billiards, Proceedings of the International Congress of Dynamical Systems (1996), 21-45, F. Ledrappier et al. eds., Montevideo, Uruguay Zbl0904.58036
 - A. Katok, B. Hasselblatt, Encyclopedia of Mathematics and its Applications, 54 (1995), Cambridge University Press Zbl0878.58020MR1326374
 - H. Masur, Closed trajectories of a quadratic differential with an application to billiards, Duke Math. J. 53 (1986), 307-313 Zbl0616.30044MR850537
 - H. Masur, S. Tabachnikov, Rational billiards and flat structures, 1A (2002), 1015-1089, North-Holland Zbl1057.37034
 - T. Ruijgrok, Periodic orbits in triangular billiards, Acta Physica Polonica B22 (1991), 955-981
 - J. Schmeling, S. Troubetzkoy, Inhomogeneous Diophantine approximation and angular recurrence for polygonal billiards, Math. Sb. 194 (2003), 295-309 Zbl1043.37028MR1992153
 - S. Tabachnikov, Billiards, (1995), Soc. Math. France Zbl0833.58001MR1328336
 - S. Troubetzkoy, Recurrence and periodic billiard orbits in polygons, Regul. Chaotic Dyn. 9 (2004), 1-12 Zbl1049.37024MR2058893
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.