Zygmund's program: some partial solutions

Alexander Stokolos[1]

  • [1] DePaul University, department of mathematical sciences, Chicago, IL 60614 (USA)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 5, page 1439-1453
  • ISSN: 0373-0956

Abstract

top
We present a simple criterion to decide whether the maximal function associated with a translation invariant basis of multidimensional intervals satisfies a weak type ( 1 , 1 ) estimate. This allows us to complete Zygmund’s program of the description of the translation invariant bases of multidimensional intervals in the particular case of products of two cubic intervals. As a conjecture, we suggest a more precise version of Zygmund’s program.

How to cite

top

Stokolos, Alexander. "Zygmund's program: some partial solutions." Annales de l’institut Fourier 55.5 (2005): 1439-1453. <http://eudml.org/doc/116222>.

@article{Stokolos2005,
abstract = {We present a simple criterion to decide whether the maximal function associated with a translation invariant basis of multidimensional intervals satisfies a weak type $(1,1)$ estimate. This allows us to complete Zygmund’s program of the description of the translation invariant bases of multidimensional intervals in the particular case of products of two cubic intervals. As a conjecture, we suggest a more precise version of Zygmund’s program.},
affiliation = {DePaul University, department of mathematical sciences, Chicago, IL 60614 (USA)},
author = {Stokolos, Alexander},
journal = {Annales de l’institut Fourier},
keywords = {covering lemmas; maximal functions; -class; weak-type estimates},
language = {eng},
number = {5},
pages = {1439-1453},
publisher = {Association des Annales de l'Institut Fourier},
title = {Zygmund's program: some partial solutions},
url = {http://eudml.org/doc/116222},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Stokolos, Alexander
TI - Zygmund's program: some partial solutions
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 5
SP - 1439
EP - 1453
AB - We present a simple criterion to decide whether the maximal function associated with a translation invariant basis of multidimensional intervals satisfies a weak type $(1,1)$ estimate. This allows us to complete Zygmund’s program of the description of the translation invariant bases of multidimensional intervals in the particular case of products of two cubic intervals. As a conjecture, we suggest a more precise version of Zygmund’s program.
LA - eng
KW - covering lemmas; maximal functions; -class; weak-type estimates
UR - http://eudml.org/doc/116222
ER -

References

top
  1. A. M. Bruckner, Differentiation of integrals, 78 (1971) Zbl0225.28002MR293044
  2. C. Carathéodory, Vorlesungen über reelle Funktionen, (1968), New York Zbl46.0376.12MR225940
  3. A. Córdoba, Maximal functions, covering lemmas and Fourier multipliers, Harmonic Analysis in Euclidean Spaces, Part 1, 35 (1979), 29-49, Amer. Math. Soc., Williamstown, MA, 1978 Zbl0472.42010
  4. A. Córdoba, R. Fefferman, A geometric proof of the strong maximal theorem, Ann. of Math. 102 (1975), 95-100 Zbl0325.42015MR379785
  5. R. Fefferman, Covering lemmas, maximal functions and multiplier operators in Fourier analysis, Harmonic Analysis in Euclidean Spaces, Part 1, 35 (1979), 51-60, Amer. Math. Soc., Williamstown, MA, 1978 Zbl0489.42018
  6. R. Fefferman, Strong differentiation with respect to measures, Amer. J. Math. 103 (1981), 33-40 Zbl0475.42019MR601461
  7. R. Fefferman, Some weighted norm inequalities for Córdoba's maximal function, Amer. J. Math. 106 (1984), 1261-1264 Zbl0575.42022MR761586
  8. R. Fefferman, J. Pipher, Multiparameter operators and sharp weighted inequalities, Amer. J. Math. 119 (1997), 337-369 Zbl0877.42004MR1439553
  9. M. de Guzmán, Differentiation of Integrals in R n , 481 (1975), Springer Zbl0327.26010
  10. M. de Guzmán, Real Variable Methods in Fourier Analysis, 46 (1981), North-Holland, Amsterdam Zbl0449.42001
  11. C. A. Hayes, C. Y. Pauk, Derivation and Martingales, (1970), Springer, Berlin Zbl0192.40604
  12. P. A. Hagelstein, (private communication) 
  13. S. Saks, Theory of the Integral, (1939) Zbl0017.30004
  14. S. Saks, On the strong derivatives of functions of intervals, Fund. Math. 25 (1935), 235-252 Zbl0012.05902
  15. F. Soria, Examples and counterexamples to a conjecture in the theory of differentiation of integrals, Ann. of Math (1986) Zbl0593.42007MR825837
  16. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, (1970), Princeton Univ. Press, Princeton, NJ Zbl0207.13501MR290095
  17. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, with the assistance of T. S. Murphy, (1993), Princeton Univ. Press, Princeton, NJ Zbl0821.42001MR1232192
  18. E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, (1971), Princeton Univ. Press, Princeton, NJ Zbl0232.42007MR304972
  19. E. M. Stein, N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc. 140 (1969), 35-54 Zbl0182.10801MR241685
  20. A. M. Stokolos, On strong differentiation of integrals of functions from L ϕ ( L ) , Studia Math. 88 (1988), 103-120 Zbl0706.28005MR931036
  21. A. Zygmund, Trigonometric Series, 2 (1958), Cambridge Univ. Press Zbl0085.05601
  22. A. Zygmund, A note on the differentiability of multiple integrals, Colloq. Math. 16 (1967), 199-204 Zbl0156.06301MR210847

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.