Zygmund's program: some partial solutions
- [1] DePaul University, department of mathematical sciences, Chicago, IL 60614 (USA)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 5, page 1439-1453
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topStokolos, Alexander. "Zygmund's program: some partial solutions." Annales de l’institut Fourier 55.5 (2005): 1439-1453. <http://eudml.org/doc/116222>.
@article{Stokolos2005,
abstract = {We present a simple criterion to decide whether the maximal function associated with a
translation invariant basis of multidimensional intervals satisfies a weak type $(1,1)$ estimate. This allows us to complete Zygmund’s program of the description of the
translation invariant bases of multidimensional intervals in the particular case of
products of two cubic intervals. As a conjecture, we suggest a more precise version of
Zygmund’s program.},
affiliation = {DePaul University, department of mathematical sciences, Chicago, IL 60614 (USA)},
author = {Stokolos, Alexander},
journal = {Annales de l’institut Fourier},
keywords = {covering lemmas; maximal functions; -class; weak-type estimates},
language = {eng},
number = {5},
pages = {1439-1453},
publisher = {Association des Annales de l'Institut Fourier},
title = {Zygmund's program: some partial solutions},
url = {http://eudml.org/doc/116222},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Stokolos, Alexander
TI - Zygmund's program: some partial solutions
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 5
SP - 1439
EP - 1453
AB - We present a simple criterion to decide whether the maximal function associated with a
translation invariant basis of multidimensional intervals satisfies a weak type $(1,1)$ estimate. This allows us to complete Zygmund’s program of the description of the
translation invariant bases of multidimensional intervals in the particular case of
products of two cubic intervals. As a conjecture, we suggest a more precise version of
Zygmund’s program.
LA - eng
KW - covering lemmas; maximal functions; -class; weak-type estimates
UR - http://eudml.org/doc/116222
ER -
References
top- A. M. Bruckner, Differentiation of integrals, 78 (1971) Zbl0225.28002MR293044
- C. Carathéodory, Vorlesungen über reelle Funktionen, (1968), New York Zbl46.0376.12MR225940
- A. Córdoba, Maximal functions, covering lemmas and Fourier multipliers, Harmonic Analysis in Euclidean Spaces, Part 1, 35 (1979), 29-49, Amer. Math. Soc., Williamstown, MA, 1978 Zbl0472.42010
- A. Córdoba, R. Fefferman, A geometric proof of the strong maximal theorem, Ann. of Math. 102 (1975), 95-100 Zbl0325.42015MR379785
- R. Fefferman, Covering lemmas, maximal functions and multiplier operators in Fourier analysis, Harmonic Analysis in Euclidean Spaces, Part 1, 35 (1979), 51-60, Amer. Math. Soc., Williamstown, MA, 1978 Zbl0489.42018
- R. Fefferman, Strong differentiation with respect to measures, Amer. J. Math. 103 (1981), 33-40 Zbl0475.42019MR601461
- R. Fefferman, Some weighted norm inequalities for Córdoba's maximal function, Amer. J. Math. 106 (1984), 1261-1264 Zbl0575.42022MR761586
- R. Fefferman, J. Pipher, Multiparameter operators and sharp weighted inequalities, Amer. J. Math. 119 (1997), 337-369 Zbl0877.42004MR1439553
- M. de Guzmán, Differentiation of Integrals in , 481 (1975), Springer Zbl0327.26010
- M. de Guzmán, Real Variable Methods in Fourier Analysis, 46 (1981), North-Holland, Amsterdam Zbl0449.42001
- C. A. Hayes, C. Y. Pauk, Derivation and Martingales, (1970), Springer, Berlin Zbl0192.40604
- P. A. Hagelstein, (private communication)
- S. Saks, Theory of the Integral, (1939) Zbl0017.30004
- S. Saks, On the strong derivatives of functions of intervals, Fund. Math. 25 (1935), 235-252 Zbl0012.05902
- F. Soria, Examples and counterexamples to a conjecture in the theory of differentiation of integrals, Ann. of Math (1986) Zbl0593.42007MR825837
- E. M. Stein, Singular Integrals and Differentiability Properties of Functions, (1970), Princeton Univ. Press, Princeton, NJ Zbl0207.13501MR290095
- E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, with the assistance of T. S. Murphy, (1993), Princeton Univ. Press, Princeton, NJ Zbl0821.42001MR1232192
- E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, (1971), Princeton Univ. Press, Princeton, NJ Zbl0232.42007MR304972
- E. M. Stein, N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc. 140 (1969), 35-54 Zbl0182.10801MR241685
- A. M. Stokolos, On strong differentiation of integrals of functions from , Studia Math. 88 (1988), 103-120 Zbl0706.28005MR931036
- A. Zygmund, Trigonometric Series, 2 (1958), Cambridge Univ. Press Zbl0085.05601
- A. Zygmund, A note on the differentiability of multiple integrals, Colloq. Math. 16 (1967), 199-204 Zbl0156.06301MR210847
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.