# Numerical study of the 6-vertex model with domain wall boundary conditions

David Allison^{[1]}; Nicolai Reshetikhin

- [1] University of California, department of mathematics, Berkeley CA 94720-38 (USA)

Annales de l’institut Fourier (2005)

- Volume: 55, Issue: 6, page 1847-1869
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topAllison, David, and Reshetikhin, Nicolai. "Numerical study of the 6-vertex model with domain wall boundary conditions." Annales de l’institut Fourier 55.6 (2005): 1847-1869. <http://eudml.org/doc/116236>.

@article{Allison2005,

abstract = {A Markov process converging to a random state of the 6-vertex model is constructed. It is
used to show that a droplet of c-vertices is created in the antiferromagnetic phase and
that the shape of this droplet has four cusps.},

affiliation = {University of California, department of mathematics, Berkeley CA 94720-38 (USA)},

author = {Allison, David, Reshetikhin, Nicolai},

journal = {Annales de l’institut Fourier},

keywords = {6-vertex; Markov chain; random sampling; Monte Carlo},

language = {eng},

number = {6},

pages = {1847-1869},

publisher = {Association des Annales de l'Institut Fourier},

title = {Numerical study of the 6-vertex model with domain wall boundary conditions},

url = {http://eudml.org/doc/116236},

volume = {55},

year = {2005},

}

TY - JOUR

AU - Allison, David

AU - Reshetikhin, Nicolai

TI - Numerical study of the 6-vertex model with domain wall boundary conditions

JO - Annales de l’institut Fourier

PY - 2005

PB - Association des Annales de l'Institut Fourier

VL - 55

IS - 6

SP - 1847

EP - 1869

AB - A Markov process converging to a random state of the 6-vertex model is constructed. It is
used to show that a droplet of c-vertices is created in the antiferromagnetic phase and
that the shape of this droplet has four cusps.

LA - eng

KW - 6-vertex; Markov chain; random sampling; Monte Carlo

UR - http://eudml.org/doc/116236

ER -

## References

top- H. Cohn, M. Larsen, J. Propp, The shape of a typical boxed plane partition, New York J. Math. 4 (1998), 137-165 Zbl0908.60083MR1641839
- H. Cohn, N. Elkis, J. Propp, Local statistics of random domino tilings of the Aztec diamons, Duke Math. J. 85 (1996), 117-166 Zbl0866.60018MR1412441
- R.J. Baxter, Exactly Solved Models in Statistical Mechanics, (1982), Academic Press, San Diego Zbl0538.60093MR690578
- K. Eloranta, Diamond Ice, J. Statist. Phys. 96 (1999), 1091-1109 Zbl1080.82514MR1722988
- A. Izergin, Partition function of the 6-vertex model in a finite volume, Sov. Phys. Dokl. 32 (1987), 878-879 Zbl0875.82015
- R. Kenyon, An introduction to the dimer models Zbl1076.82025
- V. Korepin, P. Zinn-Justin, Thermodynamic limit of the six-vertex model withdomain wall boundary conditions Zbl0956.82008
- V.E. Korepin, Calculation of norms of Bethe wave functions, Comm. Math. Phys. 86 (1982), 391-418 Zbl0531.60096MR677006
- G. Kuperberg, Another proof of the alternating-sign matrix conjecture, Int. Math. Res. Notes 3 (1996), 139-150 Zbl0859.05027MR1383754
- E. Lieb, F. Wu, Two dimensional ferroelectric models, Phase transitions and critical phenomena (1972), Academic Press
- R. Kenyon, A. Okounkov, S. Sheffield, Dimers and amoebae Zbl1154.82007
- A. Okounkov, N. Reshetikhin, Random skew plane partitions and the Pearcey process Zbl1115.60011
- A. Okounkov, N. Reshetikhin, Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Amer. Math. Soc. 16 (2003), 581-603 Zbl1009.05134MR1969205
- J. Propp, D. Wilson, Coupling from the past: a user's guide, Microsurveys in Discrete Probability (Princeton, NJ, 1997) 41 (1998), 181-192, AMS Zbl0916.65147
- A. Sinclair, Algorithms for Random Generation and Counting, (1993), Birkhauser, Boston Zbl0780.68096MR1201590
- O.F. Syljuasen, M.B. Zvonarev, Directed-loop Monte Carlo simulations of vertex models
- A.V. Razumov, Yu. Stroganov, Combinatorial structure of the ground state of O(1) loop model Zbl1178.82020
- Asymptotic combinatorics withapplications to mathematical physics, 1815 (2003), Springer Zbl1014.00010
- P. Zinn-Justin, Six-vertex model with domain wall boundary conditions and one-matrix model, Phys. Rev. E 62 (2000), 3411-3418 Zbl0956.82008MR1788950
- J.-B. Zuber, On the counting of fully packed loop configurations. Some new conjectures Zbl1054.05011

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.