Integral representations for multiple Hermite and multiple Laguerre polynomials
Pavel M. BLEHER[1]; Arno B.J. Kuijlaars
- [1] Indiana University-Purdue University Indianapolis, department of mathematical sciences, 402 N. Blackford St., Indianapolis IN 46202 (USA), Katholieke Universiteit Leuven, department of mathematics, Celestijnenlaan 200 B, 3001 Leuven (Belgique)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 6, page 2001-2014
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topM. BLEHER, Pavel, and B.J. Kuijlaars, Arno. "Integral representations for multiple Hermite and multiple Laguerre polynomials." Annales de l’institut Fourier 55.6 (2005): 2001-2014. <http://eudml.org/doc/116240>.
@article{M2005,
abstract = {We give integral representations for multiple Hermite and multiple Laguerre polynomials
of both type I and II. We also show how these are connected with double integral
representations of certain kernels from random matrix theory.},
affiliation = {Indiana University-Purdue University Indianapolis, department of mathematical sciences, 402 N. Blackford St., Indianapolis IN 46202 (USA), Katholieke Universiteit Leuven, department of mathematics, Celestijnenlaan 200 B, 3001 Leuven (Belgique)},
author = {M. BLEHER, Pavel, B.J. Kuijlaars, Arno},
journal = {Annales de l’institut Fourier},
keywords = {Multiple orthogonal polynomials; random matrices; Christoffel-Darboux formula},
language = {eng},
number = {6},
pages = {2001-2014},
publisher = {Association des Annales de l'Institut Fourier},
title = {Integral representations for multiple Hermite and multiple Laguerre polynomials},
url = {http://eudml.org/doc/116240},
volume = {55},
year = {2005},
}
TY - JOUR
AU - M. BLEHER, Pavel
AU - B.J. Kuijlaars, Arno
TI - Integral representations for multiple Hermite and multiple Laguerre polynomials
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 6
SP - 2001
EP - 2014
AB - We give integral representations for multiple Hermite and multiple Laguerre polynomials
of both type I and II. We also show how these are connected with double integral
representations of certain kernels from random matrix theory.
LA - eng
KW - Multiple orthogonal polynomials; random matrices; Christoffel-Darboux formula
UR - http://eudml.org/doc/116240
ER -
References
top- A. I. Aptekarev, Multiple orthogonal polynomials, J. Comput. Appl. Math. 99 (1998), 423-447 Zbl0958.42015MR1662713
- A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, Large limit of Gaussian random matrices with external source, part II Zbl1129.82014
- A. I. Aptekarev, A. Branquinho, W. Van Assche, Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc. 355 (2003), 3887-3914 Zbl1033.33002MR1990569
- J. Baik, G. Ben Arous, S. Péché, Phase transition of the largest eigenvalue for non-null complex sample covariance matrices Zbl1086.15022
- P. M. Bleher, A. B. J. Kuijlaars, Random matrices with external source and multiple orthogonal polynomials, Internat. Math. Research Notices (2004), 109-129 Zbl1082.15035MR2038771
- P. M. Bleher, A. B. J. Kuijlaars, Large limit of Gaussian random matrices with external source, part I, Commun. Math. Phys. 252 (2004), 43-76 Zbl1124.82309MR2103904
- A. Borodin, Biorthogonal ensembles, Nuclear Phys., B 536 (1999), 704-732 Zbl0948.82018MR1663328
- E. Brézin, S. Hikami, Correlations of nearby levels induced by a random potential, Nucl. Phys., B 479 (1996), 697-706 Zbl0925.82117MR1418841
- E. Brézin, S. Hikami, Spectral form factor in a random matrix theory, Phys. Rev. E 55 (1997), 4067-4083 Zbl1132.15020MR1449379
- E. Brézin, S. Hikami, Extension of level-spacing universality, Phys. Rev. E 56 (1997), 264-269
- E. Brézin, S. Hikami, Universal singularity at the closure of a gap in a random matrix theory, Phys. Rev. E 57 (1998), 4140-4149 MR1618958
- E. Brézin, S. Hikami, Level spacing of random matrices in an external source, Phys. Rev. E 58 (1998), 7176-7185 MR1662382
- E. Daems, A. B. J. Kuijlaars, A Christoffel-Darboux formula for multiple orthogonal polynomials, J. Approx. Theory 130 (2004), 188-200 Zbl1063.42014MR2100703
- Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 87-120 Zbl0072.01901MR84104
- T. Imamura, T. Sasamoto, Polynuclear growth model GOE and random matrix with deterministic source Zbl1123.82352
- C. Itzykson, J. B. Zuber, The planar approximation II, J. Math. Phys. 21 (1980), 411-421 Zbl0997.81549MR562985
- K. Johansson, Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices, Comm. Math. Phys. 215 (2001), 683-705 Zbl0978.15020MR1810949
- E. Nikishin, V. Sorokin, Rational Approximation and Orthogonality, 92 (1991), Amer. Math. Soc., Providence R.I Zbl0733.41001MR1130396
- C. Tracy, H. Widom, The Pearcey process Zbl1129.82031
- W. Van Assche, E. Coussement, Some classical multiple orthogonal polynomials, J. Comput. Appl. Math. 127 (2001), 317-347 Zbl0969.33005MR1808581
- P. Zinn-Justin, Random Hermitian matrices in an external field, Nuclear Phys. B 497 (1997), 725-732 Zbl0933.82022MR1463645
- P. Zinn-Justin, Universality of correlation functions of Hermitian random matrices in an external field, Comm. Math. Phys 194 (1998), 631-650 Zbl0912.15028MR1631489
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.