Matrix valued orthogonal polynomials of Jacobi type: the role of group representation theory

F. Alberto Grünbaum[1]; Inés Pacharoni; Juan Alfredo Tirao

  • [1] University of California, department of mathematics, Berkeley CA 94705 (USA), Universidad Nacional de Córdoba, CIEM-FaMAF, Córdoba 5000 (Argentine)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 6, page 2051-2068
  • ISSN: 0373-0956

Abstract

top
The main purpose of this paper is to present new families of Jacobi type matrix valued orthogonal polynomials obtained from the underlying group S U ( n ) and its representations. These polynomials are eigenfunctions of some symmetric second order hypergeometric differential operator with matrix coefficients. The final result holds for arbitrary values of the parameters α , β > - 1 , but it is derived only for those values that come from the group theoretical setup.

How to cite

top

Grünbaum, F. Alberto, Pacharoni, Inés, and Alfredo Tirao, Juan. "Matrix valued orthogonal polynomials of Jacobi type: the role of group representation theory." Annales de l’institut Fourier 55.6 (2005): 2051-2068. <http://eudml.org/doc/116243>.

@article{Grünbaum2005,
abstract = {The main purpose of this paper is to present new families of Jacobi type matrix valued orthogonal polynomials obtained from the underlying group $SU(n)$ and its representations. These polynomials are eigenfunctions of some symmetric second order hypergeometric differential operator with matrix coefficients. The final result holds for arbitrary values of the parameters $\alpha ,\beta &gt;-1$, but it is derived only for those values that come from the group theoretical setup.},
affiliation = {University of California, department of mathematics, Berkeley CA 94705 (USA), Universidad Nacional de Córdoba, CIEM-FaMAF, Córdoba 5000 (Argentine)},
author = {Grünbaum, F. Alberto, Pacharoni, Inés, Alfredo Tirao, Juan},
journal = {Annales de l’institut Fourier},
keywords = {Matrix valued orthogonal polynomials; Jacobi polynomials; matrix valued orthogonal polynomials; symmetric spaces},
language = {eng},
number = {6},
pages = {2051-2068},
publisher = {Association des Annales de l'Institut Fourier},
title = {Matrix valued orthogonal polynomials of Jacobi type: the role of group representation theory},
url = {http://eudml.org/doc/116243},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Grünbaum, F. Alberto
AU - Pacharoni, Inés
AU - Alfredo Tirao, Juan
TI - Matrix valued orthogonal polynomials of Jacobi type: the role of group representation theory
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 6
SP - 2051
EP - 2068
AB - The main purpose of this paper is to present new families of Jacobi type matrix valued orthogonal polynomials obtained from the underlying group $SU(n)$ and its representations. These polynomials are eigenfunctions of some symmetric second order hypergeometric differential operator with matrix coefficients. The final result holds for arbitrary values of the parameters $\alpha ,\beta &gt;-1$, but it is derived only for those values that come from the group theoretical setup.
LA - eng
KW - Matrix valued orthogonal polynomials; Jacobi polynomials; matrix valued orthogonal polynomials; symmetric spaces
UR - http://eudml.org/doc/116243
ER -

References

top
  1. J. J. Duistermaat, F. A. Grünbaum, Differential equations in the spectral parameter, Comm. Math. Phys. 103 (1986), 177-240 Zbl0625.34007MR826863
  2. A. Duran, Matrix inner product having a matrix symmetric second order differential operators, Rocky Mountain Journal of Mathematics 27 (1997), 585-600 Zbl0899.34050MR1466158
  3. A. Duran, On orthogonal polynomials with respect to a positive definite matrix of measures, Canadian J. Math. 47 (1995), 88-112 Zbl0832.42014MR1319691
  4. A. Duran, Markov Theorem for orthogonal matrix polynomials, Canadian J. Math. 48 (1996), 1180-1195 Zbl0876.42014MR1426899
  5. A. Duran, Ratio Asymptotics for orthogonal matrix polynomials, J. Approx. Th. 100 (1999), 304-344 Zbl0944.42015MR1714953
  6. A. Duran, B. Polo, Gaussian quadrature formulae for matrix weights, Linear Algebra and Appl. 355 (2002), 119-146 Zbl1026.41022MR1930141
  7. A. J. Duran, F. A. Grünbaum, Orthogonal matrix polynomials satisfying second order differential equations, International Math. Research Notices 10 (2004), 461-484 Zbl1073.33009MR2039133
  8. A. J. Duran, F. A. Grünbaum, A characterization for a class of weight matrices with orthogonal matrix polynomials satisfying second order differential equations Zbl1102.42013MR2039133
  9. A. Duran, van W. Assche, Orthogonal matrix polynomials and higher order recurrence relations, Linear Algebra and Its Applications 219 (1995), 261-280 Zbl0827.15027MR1327404
  10. J. S. Geronimo, Scattering theory and matrix orthogonal polynomials on the real line, Circuits Systems Signal Process 1 (1982), 471-495 Zbl0506.15010MR730128
  11. F. A. Grünbaum, Matrix valued Jacobi polynomials, Bull. Sciences Math. 127 (2003), 207-214 Zbl1026.33008MR1988656
  12. F. A. Grünbaum, I. Pacharoni, J. Tirao, Matrix valued spherical functions associated to the complex projective plane, J. Functional Analysis 188 (2002), 350-441 Zbl0996.43013MR1883412
  13. F. A. Grünbaum, I. Pacharoni, J. Tirao, A matrix valued solution to Bochner's problem, J. Physics A: Math. Gen. 34 (2001), 10647-10656 Zbl0990.22012MR1877484
  14. F. A. Grünbaum, I. Pacharoni, J. Tirao, Matrix valued spherical functions associated to the three dimensional hyperbolic space, Internat. J. of Mathematics 13 (2002), 727-784 Zbl1048.22005MR1921509
  15. F. A. Grünbaum, I. Pacharoni, J. Tirao, An invitation to matrix valued spherical functions: Linearization of products in the case of the complex projective space P 2 ( ) , Modern Signal Processing 46 (2003), 147-160 Zbl1075.33004
  16. F. A. Grünbaum, I. Pacharoni, J. Tirao, Matrix valued orthogonal polynomials of the Jacobi type, Indag. Mathem. 14 (2003), 353-366 Zbl1070.33011MR2083080
  17. R. Gangolli, V. S. Varadarajan, Harmonic analysis of spherical functions on real reductive groups, 101 (1988), Springer-Verlag, Berlin, New York Zbl0675.43004MR954385
  18. M. G. Krein, Fundamental aspects of the representation theory of Hermitian operators with deficiency index ( m , m ) , 97 (1971), 75-143, Providence, Rhode Island Zbl0258.47025
  19. M. G. Krein, Infinite J-matrices and a matrix moment problem, Dokl. Akad. Nauk SSSR 69 (1949), 125-128 MR34964
  20. I. Pacharoni, J. Tirao, Matrix valued spherical functions associated to the complex projective space Zbl0996.43013
  21. A. Sinap, van W. Assche, Orthogonal matrix polynomials and applications, J. Comput. and Applied Math. 66 (1996), 27-52 Zbl0863.42018MR1393717
  22. J. Tirao, Spherical functions, Rev. de la Unión Matem. Argentina 28 (1977), 75-98 Zbl0378.43009MR473723
  23. J. Tirao, The matrix valued hypergeometric equation, Proc. Nat. Acad. Sci. U.S.A 100 (2003), 8138-8141 Zbl1070.33015MR1989346
  24. N. Vilenkin, A. Klimyk, Representation of Lie Groups and Special functions, Kluwer Academic, Dordrecht, MA 3 (1992) Zbl0826.22001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.