Non-commutative matrix integrals and representation varieties of surface groups in a finite group
Motohico Mulase[1]; Josephine T. Yu
- [1] University of California, department of mathematics, One Shields Avenue Davis CA 95616 (USA), University of California, department of mathematics, Evans Hall 3840 Berkeley CA 94720-3840 (USA)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 6, page 2161-2196
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMulase, Motohico, and T. Yu, Josephine. "Non-commutative matrix integrals and representation varieties of surface groups in a finite group." Annales de l’institut Fourier 55.6 (2005): 2161-2196. <http://eudml.org/doc/116249>.
@article{Mulase2005,
abstract = {A new formula is established for the asymptotic expansion of a matrix integral with
values in a finite-dimensional von Neumann algebra in terms of graphs on surfaces which
are orientable or non-orientable.},
affiliation = {University of California, department of mathematics, One Shields Avenue Davis CA 95616 (USA), University of California, department of mathematics, Evans Hall 3840 Berkeley CA 94720-3840 (USA)},
author = {Mulase, Motohico, T. Yu, Josephine},
journal = {Annales de l’institut Fourier},
keywords = {Random matrices; non-commutative matrix integral; Feynman diagram expansion; ribbon graph; Moebius graph; von Neumann algebra; representation variety; random matrices; Möbius graph; group algebra; finite group; surface group},
language = {eng},
number = {6},
pages = {2161-2196},
publisher = {Association des Annales de l'Institut Fourier},
title = {Non-commutative matrix integrals and representation varieties of surface groups in a finite group},
url = {http://eudml.org/doc/116249},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Mulase, Motohico
AU - T. Yu, Josephine
TI - Non-commutative matrix integrals and representation varieties of surface groups in a finite group
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 6
SP - 2161
EP - 2196
AB - A new formula is established for the asymptotic expansion of a matrix integral with
values in a finite-dimensional von Neumann algebra in terms of graphs on surfaces which
are orientable or non-orientable.
LA - eng
KW - Random matrices; non-commutative matrix integral; Feynman diagram expansion; ribbon graph; Moebius graph; von Neumann algebra; representation variety; random matrices; Möbius graph; group algebra; finite group; surface group
UR - http://eudml.org/doc/116249
ER -
References
top- M. Adler, P. van Moerbeke, Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum, Ann. of Math. (2) 153 (2001), 149-189 Zbl1033.82005MR1826412
- J. Baik, P. Deift, K. Johansson, On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc. 12 (1999), 1119-1178 Zbl0932.05001MR1682248
- J. Baik, P. Deift, K. Johansson, On the distribution of the length of the second row of a Young diagram under Plancherel measure, (1999) Zbl0963.05133
- J. Baik, E. Rains, Symmetrized random permutations, (1999) Zbl0989.60010
- G.V. Belyi, On galois extensions of a maximal cyclotomic fields, Math. USSR Izvestija 14 (1980), 247-256 Zbl0429.12004MR534593
- D. Bessis, C. Itzykson, J.B. Zuber, Quantum field theory techniques in graphical enumeration, Advances Applied Math. 1 (1980), 109-157 Zbl0453.05035MR603127
- P.M. Bleher, A.R. Its, Random matrix models and their applications, 40 (2001), Cambridge University Press Zbl0967.00059MR1842779
- A. Borodin, A. Okounkov, G. Olshanski, On asymptotics of Plancherel measures for symmetric groups, (1999) Zbl0938.05061
- C. Brézin, C. Itzykson, G. Parisi, J.-B. Zuber, Planar diagrams, Comm. Math. Physics 59 (1978), 35-51 Zbl0997.81548MR471676
- W. Burnside, Theory of groups of finite order, 2nd ed., (1991), Cambridge University Press Zbl01.0191.01
- P. Deift, Integrable systems and combinatorial theory, Notices AMS 47 (2000), 631-640 Zbl1041.05004MR1764262
- R.P. Feynman, Space-time approach to quantum electrodynamics, Phys. Review 76 (1949), 769-789 Zbl0038.13302MR35687
- D.S. Freed, Frank Quinn, Chern-Simons theory with finite gauge group, Communications in Mathematical Physics 156 (1993), 435-472 Zbl0788.58013MR1240583
- G. Frobenius, Über Gruppencharaktere, Sitzungsberichte der königlich preussischen Akademie der Wissenschaften (1896), 985-1021
- G. Frobenius, I. Schur, Über die reellen 11arstellungen der endlichen Gruppen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften (1906), 186-208 Zbl37.0161.01
- F.P. Gardiner, Teichmüller theory and quadratic differentials, (1987), John Wiley & Sons Zbl0629.30002MR903027
- I.P. Goulden, J.L. Harer, J.L., D.M. Jackson, A geometric parametrization for the virtual Euler characteristics of the moduli spaces of real and complex algebraic curves, Trans. Amer. Math. Soc. 353 (2001), 4405-4427 Zbl0981.58007MR1851176
- D.J. Gross, W. Taylor, Two dimensional QCD is a string theory, Nucl. Phys. B 400 (1993), 181-210 Zbl0941.81580MR1227260
- J.L. Gross, T.W. Tucker, Topological graph theory, (1987), John Wiley & Sons Zbl0621.05013MR898434
- A. Grothendieck, Esquisse dun programme, (1984)
- J.L. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986), 157-176 Zbl0592.57009MR830043
- J.L. Harer, D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986), 457-485 Zbl0616.14017MR848681
- A. Hatcher, On triangulations of surfaces, Topology and Appl. 40 (1991), 189-194 Zbl0727.57012MR1123262
- I.M. Isaacs, Character theory of finite groups, (1976), Academic Press Zbl0337.20005MR460423
- K. Johansson, Discrete orthogonal polynomial ensembles and the Plancherel measure, (1999) Zbl0984.15020
- G.A. Jones, Characters and surfaces: a survey, 249 (1998), London Math. Soc. Zbl0922.30031MR1647416
- M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Physics 147 (1992), 1-23 Zbl0756.35081MR1171758
- K. Liu, Heat kernel and moduli space, Math. Research Letters 3 (1996), 743-762 Zbl0871.58014MR1426532
- K. Liu, Heat kernel and moduli space II, Math. Research Letters 4 (1996), 569-588 Zbl0886.58013MR1470427
- K. Liu, Heat kernels, symplectic geometry, moduli spaces and finite groups, Surveys Diff. Geom. 5 (1999), 527-542 Zbl1001.53060MR1772278
- A.D. Mednykh, Determination of the number of nonequivalent coverings over a compact Riemann surface, Soviet Math. Doklady 19 (1978), 318-320 Zbl0395.30034
- M. Lal Mehta, Random matrices, 2nd ed., (1991), Academic Press Zbl0780.60014MR1083764
- M. Mulase, Algebraic theory of the KP equations, (1994), 157-223, Intern. Press Co. Zbl0837.35132
- M. Mulase, Matrix integrals and integrable systems, (1994), World Scientific Zbl0903.15007
- M. Mulase, Asymptotic analysis of a hermitian matrix integral, Int. J. Math. 6 (1995), 881-892 Zbl0870.14019MR1353999
- M. Mulase, Lectures on the asymptotic expansion of a hermitian matrix integral, Supersymmetry and Integrable Models 502 (1998) Zbl0901.35092
- M. Mulase, M. Penkava, Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over , Asian J. Math. 2 (1998), 875-920 Zbl0964.30023MR1734132
- M. Mulase, A. Waldron, Duality of orthogonal and symplectic matrix integrals and quaternionic Feynman graphs, (2002) Zbl1033.81062MR2005857
- M. Mulase, J.T. Yu, A generating function of the number of homomorphisms from a surface groupin to a ?nite group, (2002)
- A. Okounkov, Random matrices and random permutations, (1999) Zbl1018.15020MR1802530
- A. Okounkov, R. Pandharipande, Mapcolor theorem, (1974), Springer-Verlag
- A. Okounkov, R. Pandharipande, The equivariant Gromov-Witten theory of , (2002) Zbl1105.14077
- R.C. Penner, Perturbation series and the moduli space of Riemann surfaces, J. Diff. Geom. 27 (1988), 35-53 Zbl0608.30046MR918455
- G. Ringel, Map color theorem, (1974), Springer-Verlag Zbl0287.05102MR349461
- L. Schneps, The Grothendieck theory of dessins d'enfants, 200 (1994), London Math. Soc. Zbl0798.00001
- L. Schneps, P. Lochak, eds., Geometric Galois actions: around Grothendieck's esquisse d'un programme, 242 (1997), London Math. Soc. Zbl0868.00041
- J.-P. Serre, Linear representations of finite groups, (1987), Springer-Verlag Zbl0355.20006MR450380
- R.P. Stanley, Enumerative combinatorics, 2 (2001), Cambridge University Press Zbl0978.05002
- K. Strebel, Quadratic differentials, (1984), Springer-Verlag Zbl0547.30001MR743423
- G. 't Hooft, A planer diagram theory for strong interactions, Nuclear Physics B 72 (1974), 461-473
- C.A. Tracy, H. Widom, Fredholm Determinants, Differential Equations and Matrix Models, hep-th/9306042, Comm. Math. Physics 163 (1994), 33-72 Zbl0813.35110MR1277933
- P. van Moerbeke, Integrable lattices: random matrics and random permutations, Random Matrix Models and Their Applications 40 (2001), 321-406 Zbl0987.15014
- E. Witten, On quantum gauge theories in two dimensions, Comm. Math. Physics 141 (1991), 153-209 Zbl0762.53063MR1133264
- E. Witten, Two dimensional gravity and intersection theory on moduli space, Surveys Diff. Geom. 1 (1991), 243-310 Zbl0757.53049MR1144529
- J. Yu, Graphical expansion of matrix integrals with values in a Clifford algebra, 6 (2003), University of California, Davis
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.