Non-commutative matrix integrals and representation varieties of surface groups in a finite group

Motohico Mulase[1]; Josephine T. Yu

  • [1] University of California, department of mathematics, One Shields Avenue Davis CA 95616 (USA), University of California, department of mathematics, Evans Hall 3840 Berkeley CA 94720-3840 (USA)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 6, page 2161-2196
  • ISSN: 0373-0956

Abstract

top
A new formula is established for the asymptotic expansion of a matrix integral with values in a finite-dimensional von Neumann algebra in terms of graphs on surfaces which are orientable or non-orientable.

How to cite

top

Mulase, Motohico, and T. Yu, Josephine. "Non-commutative matrix integrals and representation varieties of surface groups in a finite group." Annales de l’institut Fourier 55.6 (2005): 2161-2196. <http://eudml.org/doc/116249>.

@article{Mulase2005,
abstract = {A new formula is established for the asymptotic expansion of a matrix integral with values in a finite-dimensional von Neumann algebra in terms of graphs on surfaces which are orientable or non-orientable.},
affiliation = {University of California, department of mathematics, One Shields Avenue Davis CA 95616 (USA), University of California, department of mathematics, Evans Hall 3840 Berkeley CA 94720-3840 (USA)},
author = {Mulase, Motohico, T. Yu, Josephine},
journal = {Annales de l’institut Fourier},
keywords = {Random matrices; non-commutative matrix integral; Feynman diagram expansion; ribbon graph; Moebius graph; von Neumann algebra; representation variety; random matrices; Möbius graph; group algebra; finite group; surface group},
language = {eng},
number = {6},
pages = {2161-2196},
publisher = {Association des Annales de l'Institut Fourier},
title = {Non-commutative matrix integrals and representation varieties of surface groups in a finite group},
url = {http://eudml.org/doc/116249},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Mulase, Motohico
AU - T. Yu, Josephine
TI - Non-commutative matrix integrals and representation varieties of surface groups in a finite group
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 6
SP - 2161
EP - 2196
AB - A new formula is established for the asymptotic expansion of a matrix integral with values in a finite-dimensional von Neumann algebra in terms of graphs on surfaces which are orientable or non-orientable.
LA - eng
KW - Random matrices; non-commutative matrix integral; Feynman diagram expansion; ribbon graph; Moebius graph; von Neumann algebra; representation variety; random matrices; Möbius graph; group algebra; finite group; surface group
UR - http://eudml.org/doc/116249
ER -

References

top
  1. M. Adler, P. van Moerbeke, Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum, Ann. of Math. (2) 153 (2001), 149-189 Zbl1033.82005MR1826412
  2. J. Baik, P. Deift, K. Johansson, On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc. 12 (1999), 1119-1178 Zbl0932.05001MR1682248
  3. J. Baik, P. Deift, K. Johansson, On the distribution of the length of the second row of a Young diagram under Plancherel measure, (1999) Zbl0963.05133
  4. J. Baik, E. Rains, Symmetrized random permutations, (1999) Zbl0989.60010
  5. G.V. Belyi, On galois extensions of a maximal cyclotomic fields, Math. USSR Izvestija 14 (1980), 247-256 Zbl0429.12004MR534593
  6. D. Bessis, C. Itzykson, J.B. Zuber, Quantum field theory techniques in graphical enumeration, Advances Applied Math. 1 (1980), 109-157 Zbl0453.05035MR603127
  7. P.M. Bleher, A.R. Its, Random matrix models and their applications, 40 (2001), Cambridge University Press Zbl0967.00059MR1842779
  8. A. Borodin, A. Okounkov, G. Olshanski, On asymptotics of Plancherel measures for symmetric groups, (1999) Zbl0938.05061
  9. C. Brézin, C. Itzykson, G. Parisi, J.-B. Zuber, Planar diagrams, Comm. Math. Physics 59 (1978), 35-51 Zbl0997.81548MR471676
  10. W. Burnside, Theory of groups of finite order, 2nd ed., (1991), Cambridge University Press Zbl01.0191.01
  11. P. Deift, Integrable systems and combinatorial theory, Notices AMS 47 (2000), 631-640 Zbl1041.05004MR1764262
  12. R.P. Feynman, Space-time approach to quantum electrodynamics, Phys. Review 76 (1949), 769-789 Zbl0038.13302MR35687
  13. D.S. Freed, Frank Quinn, Chern-Simons theory with finite gauge group, Communications in Mathematical Physics 156 (1993), 435-472 Zbl0788.58013MR1240583
  14. G. Frobenius, Über Gruppencharaktere, Sitzungsberichte der königlich preussischen Akademie der Wissenschaften (1896), 985-1021 
  15. G. Frobenius, I. Schur, Über die reellen 11arstellungen der endlichen Gruppen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften (1906), 186-208 Zbl37.0161.01
  16. F.P. Gardiner, Teichmüller theory and quadratic differentials, (1987), John Wiley & Sons Zbl0629.30002MR903027
  17. I.P. Goulden, J.L. Harer, J.L., D.M. Jackson, A geometric parametrization for the virtual Euler characteristics of the moduli spaces of real and complex algebraic curves, Trans. Amer. Math. Soc. 353 (2001), 4405-4427 Zbl0981.58007MR1851176
  18. D.J. Gross, W. Taylor, Two dimensional QCD is a string theory, Nucl. Phys. B 400 (1993), 181-210 Zbl0941.81580MR1227260
  19. J.L. Gross, T.W. Tucker, Topological graph theory, (1987), John Wiley & Sons Zbl0621.05013MR898434
  20. A. Grothendieck, Esquisse d’un programme, (1984) 
  21. J.L. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986), 157-176 Zbl0592.57009MR830043
  22. J.L. Harer, D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986), 457-485 Zbl0616.14017MR848681
  23. A. Hatcher, On triangulations of surfaces, Topology and Appl. 40 (1991), 189-194 Zbl0727.57012MR1123262
  24. I.M. Isaacs, Character theory of finite groups, (1976), Academic Press Zbl0337.20005MR460423
  25. K. Johansson, Discrete orthogonal polynomial ensembles and the Plancherel measure, (1999) Zbl0984.15020
  26. G.A. Jones, Characters and surfaces: a survey, 249 (1998), London Math. Soc. Zbl0922.30031MR1647416
  27. M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Physics 147 (1992), 1-23 Zbl0756.35081MR1171758
  28. K. Liu, Heat kernel and moduli space, Math. Research Letters 3 (1996), 743-762 Zbl0871.58014MR1426532
  29. K. Liu, Heat kernel and moduli space II, Math. Research Letters 4 (1996), 569-588 Zbl0886.58013MR1470427
  30. K. Liu, Heat kernels, symplectic geometry, moduli spaces and finite groups, Surveys Diff. Geom. 5 (1999), 527-542 Zbl1001.53060MR1772278
  31. A.D. Mednykh, Determination of the number of nonequivalent coverings over a compact Riemann surface, Soviet Math. Doklady 19 (1978), 318-320 Zbl0395.30034
  32. M. Lal Mehta, Random matrices, 2nd ed., (1991), Academic Press Zbl0780.60014MR1083764
  33. M. Mulase, Algebraic theory of the KP equations, (1994), 157-223, Intern. Press Co. Zbl0837.35132
  34. M. Mulase, Matrix integrals and integrable systems, (1994), World Scientific Zbl0903.15007
  35. M. Mulase, Asymptotic analysis of a hermitian matrix integral, Int. J. Math. 6 (1995), 881-892 Zbl0870.14019MR1353999
  36. M. Mulase, Lectures on the asymptotic expansion of a hermitian matrix integral, Supersymmetry and Integrable Models 502 (1998) Zbl0901.35092
  37. M. Mulase, M. Penkava, Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over ¯ , Asian J. Math. 2 (1998), 875-920 Zbl0964.30023MR1734132
  38. M. Mulase, A. Waldron, Duality of orthogonal and symplectic matrix integrals and quaternionic Feynman graphs, (2002) Zbl1033.81062MR2005857
  39. M. Mulase, J.T. Yu, A generating function of the number of homomorphisms from a surface groupin to a ?nite group, (2002) 
  40. A. Okounkov, Random matrices and random permutations, (1999) Zbl1018.15020MR1802530
  41. A. Okounkov, R. Pandharipande, Mapcolor theorem, (1974), Springer-Verlag 
  42. A. Okounkov, R. Pandharipande, The equivariant Gromov-Witten theory of P 1 , (2002) Zbl1105.14077
  43. R.C. Penner, Perturbation series and the moduli space of Riemann surfaces, J. Diff. Geom. 27 (1988), 35-53 Zbl0608.30046MR918455
  44. G. Ringel, Map color theorem, (1974), Springer-Verlag Zbl0287.05102MR349461
  45. L. Schneps, The Grothendieck theory of dessins d'enfants, 200 (1994), London Math. Soc. Zbl0798.00001
  46. L. Schneps, P. Lochak, eds., Geometric Galois actions: around Grothendieck's esquisse d'un programme, 242 (1997), London Math. Soc. Zbl0868.00041
  47. J.-P. Serre, Linear representations of finite groups, (1987), Springer-Verlag Zbl0355.20006MR450380
  48. R.P. Stanley, Enumerative combinatorics, 2 (2001), Cambridge University Press Zbl0978.05002
  49. K. Strebel, Quadratic differentials, (1984), Springer-Verlag Zbl0547.30001MR743423
  50. G. 't Hooft, A planer diagram theory for strong interactions, Nuclear Physics B 72 (1974), 461-473 
  51. C.A. Tracy, H. Widom, Fredholm Determinants, Differential Equations and Matrix Models, hep-th/9306042, Comm. Math. Physics 163 (1994), 33-72 Zbl0813.35110MR1277933
  52. P. van Moerbeke, Integrable lattices: random matrics and random permutations, Random Matrix Models and Their Applications 40 (2001), 321-406 Zbl0987.15014
  53. E. Witten, On quantum gauge theories in two dimensions, Comm. Math. Physics 141 (1991), 153-209 Zbl0762.53063MR1133264
  54. E. Witten, Two dimensional gravity and intersection theory on moduli space, Surveys Diff. Geom. 1 (1991), 243-310 Zbl0757.53049MR1144529
  55. J. Yu, Graphical expansion of matrix integrals with values in a Clifford algebra, 6 (2003), University of California, Davis 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.