Every connected sum of lens spaces is a real component of a uniruled algebraic variety
Johannes Huisman[1]; Frédéric Mangolte[2]
- [1] Université de Bretagne Occidentale, Département de Mathématiques, CNRS UMR 6205, 6 avenue Victor Le Gorgeu, CS 93837, 29238 Brest cedex 3 (France)
- [2] Université de Savoie, Laboratoire de Mathématiques, 73376 Le Bourget du Lac Cedex (France)
Annales de l'institut Fourier (2005)
- Volume: 55, Issue: 7, page 2475-2487
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHuisman, Johannes, and Mangolte, Frédéric. "Every connected sum of lens spaces is a real component of a uniruled algebraic variety." Annales de l'institut Fourier 55.7 (2005): 2475-2487. <http://eudml.org/doc/116260>.
@article{Huisman2005,
abstract = {We show that any finite connected sum of lens spaces is diffeomorphic to a real component of a uniruled projective variety, and prove a conjecture of János Kollár.},
affiliation = {Université de Bretagne Occidentale, Département de Mathématiques, CNRS UMR 6205, 6 avenue Victor Le Gorgeu, CS 93837, 29238 Brest cedex 3 (France); Université de Savoie, Laboratoire de Mathématiques, 73376 Le Bourget du Lac Cedex (France)},
author = {Huisman, Johannes, Mangolte, Frédéric},
journal = {Annales de l'institut Fourier},
keywords = {Uniruled algebraic variety; Seifert fibered manifold; lens space; connected sum; equivariant line bundle; real algebraic model; Seifert fibred manifold; real algebraic},
language = {eng},
number = {7},
pages = {2475-2487},
publisher = {Association des Annales de l'Institut Fourier},
title = {Every connected sum of lens spaces is a real component of a uniruled algebraic variety},
url = {http://eudml.org/doc/116260},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Huisman, Johannes
AU - Mangolte, Frédéric
TI - Every connected sum of lens spaces is a real component of a uniruled algebraic variety
JO - Annales de l'institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 7
SP - 2475
EP - 2487
AB - We show that any finite connected sum of lens spaces is diffeomorphic to a real component of a uniruled projective variety, and prove a conjecture of János Kollár.
LA - eng
KW - Uniruled algebraic variety; Seifert fibered manifold; lens space; connected sum; equivariant line bundle; real algebraic model; Seifert fibred manifold; real algebraic
UR - http://eudml.org/doc/116260
ER -
References
top- A. Comessatti, Sulla connessione delle superfizie razionali reali, Annali di Math. 23 (1914), 215-283 Zbl45.0889.02
- K.H. Dovermann, M. Masuda, D.Y. Suh, Algebraic realization of equivariant vector bundles, J. reine angew. Math. 448 (1994), 31-64 Zbl0787.57016MR1266746
- J. Huisman, F. Mangolte, Every orientable Seifert 3-manifold is a real component of a uniruled algebraic variety, Topology 44 (2005), 63-71 Zbl1108.14048MR2104001
- V. Kharlamov, Variétés de Fano réelles (d'après C. Viterbo), Séminaire Bourbaki 872 (1999/2000) Zbl1004.53059
- J. Kollár, The Nash conjecture for threefolds, ERA of Amer. Math. Soc. 4 (1998), 63-73 Zbl0896.14030MR1641168
- J. Kollár, Real algebraic threefolds. II. Minimal model program, J. Amer. Math. Soc. 12 (1999), 33-83 Zbl0964.14013MR1639616
- J. Kollár, Real algebraic, J. Math. Sci., New York 94 (1999), 996-1020 Zbl0964.14014MR1703903
- J. Kollár, The topology of real and complex algebraic varieties, Adv. Stud. Pure Math. (2001) Zbl1036.14010MR1865090
- Y. Miyaoka, On the Kodaira dimension of a minimal threefold, Math. Ann. 281 (1988), 325-332 Zbl0625.14023MR949837
- S. Mori, Flip theorem and the existence of minimal models for threefolds, J. Amer. Math. Soc. 1 (1988), 117-253 Zbl0649.14023MR924704
- J. Nash, Real algebraic manifolds, Ann. Math. 56 (1952), 405-421 Zbl0048.38501MR50928
- P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487 Zbl0561.57001MR705527
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.