Stokes matrices of hypergeometric integrals

Alexey Glutsyuk[1]; Christophe Sabot[2]

  • [1] École normale supérieure de Lyon Unité de Mathématiques pures et appliquées 46 allée d’Italie 69364 Lyon 07 (France)
  • [2] Université de Lyon 1 Institut Camille Jordan 43 bd du 11 nov. 1918 69622 Villeurbanne cedex (France)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 1, page 291-317
  • ISSN: 0373-0956

Abstract

top
In this work we compute the Stokes matrices of the ordinary differential equation satisfied by the hypergeometric integrals associated to an arrangement of hyperplanes in generic position. This generalizes the computation done by J.-P. Ramis for confluent hypergeometric functions, which correspond to the arrangement of two points on the line. The proof is based on an explicit description of a base of canonical solutions as integrals on the cones of the arrangement, and combinatorial relations between integrals on cones and on domains.

How to cite

top

Glutsyuk, Alexey, and Sabot, Christophe. "Stokes matrices of hypergeometric integrals." Annales de l’institut Fourier 60.1 (2010): 291-317. <http://eudml.org/doc/116269>.

@article{Glutsyuk2010,
abstract = {In this work we compute the Stokes matrices of the ordinary differential equation satisfied by the hypergeometric integrals associated to an arrangement of hyperplanes in generic position. This generalizes the computation done by J.-P. Ramis for confluent hypergeometric functions, which correspond to the arrangement of two points on the line. The proof is based on an explicit description of a base of canonical solutions as integrals on the cones of the arrangement, and combinatorial relations between integrals on cones and on domains.},
affiliation = {École normale supérieure de Lyon Unité de Mathématiques pures et appliquées 46 allée d’Italie 69364 Lyon 07 (France); Université de Lyon 1 Institut Camille Jordan 43 bd du 11 nov. 1918 69622 Villeurbanne cedex (France)},
author = {Glutsyuk, Alexey, Sabot, Christophe},
journal = {Annales de l’institut Fourier},
keywords = {Hyperplane arrangement; hypergeometric integrals; linear ordinary differential equation; Stokes matrix; hyperplane arrangement},
language = {eng},
number = {1},
pages = {291-317},
publisher = {Association des Annales de l’institut Fourier},
title = {Stokes matrices of hypergeometric integrals},
url = {http://eudml.org/doc/116269},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Glutsyuk, Alexey
AU - Sabot, Christophe
TI - Stokes matrices of hypergeometric integrals
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 1
SP - 291
EP - 317
AB - In this work we compute the Stokes matrices of the ordinary differential equation satisfied by the hypergeometric integrals associated to an arrangement of hyperplanes in generic position. This generalizes the computation done by J.-P. Ramis for confluent hypergeometric functions, which correspond to the arrangement of two points on the line. The proof is based on an explicit description of a base of canonical solutions as integrals on the cones of the arrangement, and combinatorial relations between integrals on cones and on domains.
LA - eng
KW - Hyperplane arrangement; hypergeometric integrals; linear ordinary differential equation; Stokes matrix; hyperplane arrangement
UR - http://eudml.org/doc/116269
ER -

References

top
  1. V. I. Arnolʼd, Yu. S. Ilʼyashenko, Ordinary differential equations [Current problems in mathematics. Fundamental directions, Vol. 1, 7–149, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985; MR0823489 (87e:34049)], Dynamical systems, I 1 (1988), 1-148, Springer, Berlin Zbl0602.58020MR823489
  2. Antoine Douai, Hiroaki Terao, The determinant of a hypergeometric period matrix, Invent. Math. 128 (1997), 417-436 Zbl0866.33015MR1452427
  3. Anne Duval, Biconfluence et groupe de Galois, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 38 (1991), 211-223 Zbl0747.12006MR1127080
  4. Anne Duval, Claude Mitschi, Matrices de Stokes et groupe de Galois des équations hypergéométriques confluentes généralisées, Pacific J. Math. 138 (1989), 25-56 Zbl0705.34068MR992173
  5. Yu. S. Ilʼyashenko, A. G. Khovanskiĭ, Galois groups, Stokes operators and a theorem of Ramis, Funktsional. Anal. i Prilozhen. 24 (1990), 31-42, 96 Zbl0719.34013MR1092801
  6. Mitsuhiko Kohno, Shigemi Ohkohchi, Generalized hypergeometric equations of non-Fuchsian type, Hiroshima Math. J. 13 (1983), 83-100 Zbl0574.34003MR693552
  7. Y. Markov, V. Tarasov, A. Varchenko, The determinant of a hypergeometric period matrix, Houston J. Math. 24 (1998), 197-220 Zbl0968.32015MR1690421
  8. Claude Mitschi, Differential Galois groups of confluent generalized hypergeometric equations: an approach using Stokes multipliers, Pacific J. Math. 176 (1996), 365-405 Zbl0883.12004MR1434997
  9. Kenjiro Okubo, A global representation of a fundamental set of solutions and a Stokes phenomenon for a system of linear ordinary differential equations, J. Math. Soc. Japan 15 (1963), 268-288 Zbl0134.06902MR156025
  10. Jean-Pierre Ramis, Confluence et résurgence, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), 703-716 Zbl0722.33003MR1039492
  11. Christophe Sabot, Markov chains in a Dirichlet environment and hypergeometric integrals, C. R. Math. Acad. Sci. Paris 342 (2006), 57-62 Zbl1087.60078MR2193397
  12. A. N. Varchenko, The Euler beta-function, the Vandermonde determinant, the Legendre equation, and critical values of linear functions on a configuration of hyperplanes. I, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 1206-1235, 1337 Zbl0695.33004MR1039962
  13. A. N. Varchenko, The Euler beta-function, the Vandermonde determinant, the Legendre equation, and critical values of linear functions on a configuration of hyperplanes. II, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), 146-158, 222 Zbl0699.33004MR1044052
  14. A. N. Varchenko, I. M. Gelʼfand, Heaviside functions of a configuration of hyperplanes, Funktsional. Anal. i Prilozhen. 21 (1987), 1-18, 96 Zbl0647.32013MR925069

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.