Harmonic morphisms between Weyl spaces and twistorial maps II

Eric Loubeau[1]; Radu Pantilie[2]

  • [1] Université de Bretagne Occidentale Département de Mathématiques Laboratoire C.N.R.S. U.M.R. 6205 6, Avenue Victor Le Gorgeu, CS 93837 29238 Brest Cedex 3 (France)
  • [2] Institutul de Matematică “Simion Stoilow” al Academiei Române C.P. 1-764 014700, Bucureşti (România)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 2, page 433-453
  • ISSN: 0373-0956

Abstract

top
We define, on smooth manifolds, the notions of almost twistorial structure and twistorial map, thus providing a unified framework for all known examples of twistor spaces. The condition of being a harmonic morphism naturally appears among the geometric properties of submersive twistorial maps between low-dimensional Weyl spaces endowed with a nonintegrable almost twistorial structure due to Eells and Salamon. This leads to the twistorial characterisation of harmonic morphisms between Weyl spaces of dimensions four and three. Also, we give a thorough description of the twistorial maps with one-dimensional fibres from four-dimensional Weyl spaces endowed with the almost twistorial structure of Eells and Salamon.

How to cite

top

Loubeau, Eric, and Pantilie, Radu. "Harmonic morphisms between Weyl spaces and twistorial maps II." Annales de l’institut Fourier 60.2 (2010): 433-453. <http://eudml.org/doc/116277>.

@article{Loubeau2010,
abstract = {We define, on smooth manifolds, the notions of almost twistorial structure and twistorial map, thus providing a unified framework for all known examples of twistor spaces. The condition of being a harmonic morphism naturally appears among the geometric properties of submersive twistorial maps between low-dimensional Weyl spaces endowed with a nonintegrable almost twistorial structure due to Eells and Salamon. This leads to the twistorial characterisation of harmonic morphisms between Weyl spaces of dimensions four and three. Also, we give a thorough description of the twistorial maps with one-dimensional fibres from four-dimensional Weyl spaces endowed with the almost twistorial structure of Eells and Salamon.},
affiliation = {Université de Bretagne Occidentale Département de Mathématiques Laboratoire C.N.R.S. U.M.R. 6205 6, Avenue Victor Le Gorgeu, CS 93837 29238 Brest Cedex 3 (France); Institutul de Matematică “Simion Stoilow” al Academiei Române C.P. 1-764 014700, Bucureşti (România)},
author = {Loubeau, Eric, Pantilie, Radu},
journal = {Annales de l’institut Fourier},
keywords = {Harmonic morphism; Weyl space; twistorial map; harmonic morphism},
language = {eng},
number = {2},
pages = {433-453},
publisher = {Association des Annales de l’institut Fourier},
title = {Harmonic morphisms between Weyl spaces and twistorial maps II},
url = {http://eudml.org/doc/116277},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Loubeau, Eric
AU - Pantilie, Radu
TI - Harmonic morphisms between Weyl spaces and twistorial maps II
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 2
SP - 433
EP - 453
AB - We define, on smooth manifolds, the notions of almost twistorial structure and twistorial map, thus providing a unified framework for all known examples of twistor spaces. The condition of being a harmonic morphism naturally appears among the geometric properties of submersive twistorial maps between low-dimensional Weyl spaces endowed with a nonintegrable almost twistorial structure due to Eells and Salamon. This leads to the twistorial characterisation of harmonic morphisms between Weyl spaces of dimensions four and three. Also, we give a thorough description of the twistorial maps with one-dimensional fibres from four-dimensional Weyl spaces endowed with the almost twistorial structure of Eells and Salamon.
LA - eng
KW - Harmonic morphism; Weyl space; twistorial map; harmonic morphism
UR - http://eudml.org/doc/116277
ER -

References

top
  1. M. F. Atiyah, N. J. Hitchin, I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461 Zbl0389.53011MR506229
  2. P. Baird, J. C. Wood, Harmonic morphisms between Riemannian manifolds, (2003), Oxford Univ. Press, Oxford Zbl1055.53049MR2044031
  3. R. L. Bryant, Lie groups and twistor spaces, Duke Math. J. 52 (1985), 223-261 Zbl0582.58011MR791300
  4. D. Burns, F. E. Burstall, P. De Bartolomeis, J. Rawnsley, Stability of harmonic maps of Kähler manifolds, J. Differential Geom. 30 (1989), 579-594 Zbl0678.53062MR1010173
  5. F. E. Burstall, J. H. Rawnsley, Twistor theory for Riemannian symmetric spaces. With applications to harmonic maps of Riemann surfaces, 1424 (1990), Springer-Verlag, Berlin Zbl0699.53059MR1059054
  6. D. M. J. Calderbank, Selfdual Einstein metrics and conformal submersions, (2000), Edinburgh University 
  7. J. Eells, S. Salamon, Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 589-640 Zbl0627.58019MR848842
  8. P. Gauduchon, K. P. Tod, Hyper-Hermitian metrics with symmetry, J. Geom. Phys. 25 (1998), 291-304 Zbl0945.53042MR1619847
  9. N. J. Hitchin, Complex manifolds and Einstein’s equations, Twistor geometry and nonlinear systems (Primorsko, 1980) 970 (1982), 73-99, Springer, Berlin Zbl0507.53025MR699802
  10. C. R. LeBrun, Twistor CR manifolds and three-dimensional conformal geometry, Trans. Amer. Math. Soc. 284 (1984), 601-616 Zbl0513.53006MR743735
  11. E. Loubeau, R. Pantilie, Harmonic morphisms between Weyl spaces and twistorial maps, Comm. Anal. Geom. 14 (2006), 847-881 Zbl1127.58010MR2286268
  12. Y. Ohnita, S. Udagawa, Stable harmonic maps from Riemann surfaces to compact Hermitian symmetric spaces, Tokyo J. Math. 10 (1987), 385-390 Zbl0646.58019MR926250
  13. R. Pantilie, Harmonic morphisms between Weyl spaces, Modern Trends in Geometry and Topology (2006), 321-332 Zbl1132.53033MR2250223
  14. R. Pantilie, On a class of twistorial maps, Differential Geom. Appl. 26 (2008), 366-376 Zbl1149.53028MR2424018
  15. R. Pantilie, J. C. Wood, A new construction of Einstein self-dual manifolds, Asian J. Math. 6 (2002), 337-348 Zbl1047.53022MR1928633
  16. R. Pantilie, J. C. Wood, Twistorial harmonic morphisms with one-dimensional fibres on self-dual four-manifolds, Q. J. Math 57 (2006), 105-132 Zbl1117.53047MR2204263
  17. J. H. Rawnsley, f -structures, f -twistor spaces and harmonic maps, Geometry seminar “Luigi Bianchi” II — 1984 1164 (1985), 85-159, Springer, Berlin Zbl0592.58009MR829229
  18. H. Rossi, LeBrun’s nonrealizability theorem in higher dimensions, Duke Math. J. 52 (1985), 457-474 Zbl0573.32018MR792182
  19. Y. T. Siu, The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. (2) 112 (1980), 73-111 Zbl0517.53058MR584075
  20. J. C. Wood, Harmonic morphisms between Riemannian manifolds, Modern Trends in Geometry and Topology (2006), 397-414 Zbl1135.53043MR2250232
  21. K. Yano, On a structure defined by a tensor field f of type ( 1 , 1 ) satisfying f 3 + f = 0 , Tensor (N.S.) 14 (1963), 99-109 Zbl0122.40705MR159296

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.