Harmonic morphisms between Weyl spaces and twistorial maps II
Eric Loubeau[1]; Radu Pantilie[2]
- [1] Université de Bretagne Occidentale Département de Mathématiques Laboratoire C.N.R.S. U.M.R. 6205 6, Avenue Victor Le Gorgeu, CS 93837 29238 Brest Cedex 3 (France)
- [2] Institutul de Matematică “Simion Stoilow” al Academiei Române C.P. 1-764 014700, Bucureşti (România)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 2, page 433-453
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLoubeau, Eric, and Pantilie, Radu. "Harmonic morphisms between Weyl spaces and twistorial maps II." Annales de l’institut Fourier 60.2 (2010): 433-453. <http://eudml.org/doc/116277>.
@article{Loubeau2010,
abstract = {We define, on smooth manifolds, the notions of almost twistorial structure and twistorial map, thus providing a unified framework for all known examples of twistor spaces. The condition of being a harmonic morphism naturally appears among the geometric properties of submersive twistorial maps between low-dimensional Weyl spaces endowed with a nonintegrable almost twistorial structure due to Eells and Salamon. This leads to the twistorial characterisation of harmonic morphisms between Weyl spaces of dimensions four and three. Also, we give a thorough description of the twistorial maps with one-dimensional fibres from four-dimensional Weyl spaces endowed with the almost twistorial structure of Eells and Salamon.},
affiliation = {Université de Bretagne Occidentale Département de Mathématiques Laboratoire C.N.R.S. U.M.R. 6205 6, Avenue Victor Le Gorgeu, CS 93837 29238 Brest Cedex 3 (France); Institutul de Matematică “Simion Stoilow” al Academiei Române C.P. 1-764 014700, Bucureşti (România)},
author = {Loubeau, Eric, Pantilie, Radu},
journal = {Annales de l’institut Fourier},
keywords = {Harmonic morphism; Weyl space; twistorial map; harmonic morphism},
language = {eng},
number = {2},
pages = {433-453},
publisher = {Association des Annales de l’institut Fourier},
title = {Harmonic morphisms between Weyl spaces and twistorial maps II},
url = {http://eudml.org/doc/116277},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Loubeau, Eric
AU - Pantilie, Radu
TI - Harmonic morphisms between Weyl spaces and twistorial maps II
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 2
SP - 433
EP - 453
AB - We define, on smooth manifolds, the notions of almost twistorial structure and twistorial map, thus providing a unified framework for all known examples of twistor spaces. The condition of being a harmonic morphism naturally appears among the geometric properties of submersive twistorial maps between low-dimensional Weyl spaces endowed with a nonintegrable almost twistorial structure due to Eells and Salamon. This leads to the twistorial characterisation of harmonic morphisms between Weyl spaces of dimensions four and three. Also, we give a thorough description of the twistorial maps with one-dimensional fibres from four-dimensional Weyl spaces endowed with the almost twistorial structure of Eells and Salamon.
LA - eng
KW - Harmonic morphism; Weyl space; twistorial map; harmonic morphism
UR - http://eudml.org/doc/116277
ER -
References
top- M. F. Atiyah, N. J. Hitchin, I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461 Zbl0389.53011MR506229
- P. Baird, J. C. Wood, Harmonic morphisms between Riemannian manifolds, (2003), Oxford Univ. Press, Oxford Zbl1055.53049MR2044031
- R. L. Bryant, Lie groups and twistor spaces, Duke Math. J. 52 (1985), 223-261 Zbl0582.58011MR791300
- D. Burns, F. E. Burstall, P. De Bartolomeis, J. Rawnsley, Stability of harmonic maps of Kähler manifolds, J. Differential Geom. 30 (1989), 579-594 Zbl0678.53062MR1010173
- F. E. Burstall, J. H. Rawnsley, Twistor theory for Riemannian symmetric spaces. With applications to harmonic maps of Riemann surfaces, 1424 (1990), Springer-Verlag, Berlin Zbl0699.53059MR1059054
- D. M. J. Calderbank, Selfdual Einstein metrics and conformal submersions, (2000), Edinburgh University
- J. Eells, S. Salamon, Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 589-640 Zbl0627.58019MR848842
- P. Gauduchon, K. P. Tod, Hyper-Hermitian metrics with symmetry, J. Geom. Phys. 25 (1998), 291-304 Zbl0945.53042MR1619847
- N. J. Hitchin, Complex manifolds and Einstein’s equations, Twistor geometry and nonlinear systems (Primorsko, 1980) 970 (1982), 73-99, Springer, Berlin Zbl0507.53025MR699802
- C. R. LeBrun, Twistor CR manifolds and three-dimensional conformal geometry, Trans. Amer. Math. Soc. 284 (1984), 601-616 Zbl0513.53006MR743735
- E. Loubeau, R. Pantilie, Harmonic morphisms between Weyl spaces and twistorial maps, Comm. Anal. Geom. 14 (2006), 847-881 Zbl1127.58010MR2286268
- Y. Ohnita, S. Udagawa, Stable harmonic maps from Riemann surfaces to compact Hermitian symmetric spaces, Tokyo J. Math. 10 (1987), 385-390 Zbl0646.58019MR926250
- R. Pantilie, Harmonic morphisms between Weyl spaces, Modern Trends in Geometry and Topology (2006), 321-332 Zbl1132.53033MR2250223
- R. Pantilie, On a class of twistorial maps, Differential Geom. Appl. 26 (2008), 366-376 Zbl1149.53028MR2424018
- R. Pantilie, J. C. Wood, A new construction of Einstein self-dual manifolds, Asian J. Math. 6 (2002), 337-348 Zbl1047.53022MR1928633
- R. Pantilie, J. C. Wood, Twistorial harmonic morphisms with one-dimensional fibres on self-dual four-manifolds, Q. J. Math 57 (2006), 105-132 Zbl1117.53047MR2204263
- J. H. Rawnsley, -structures, -twistor spaces and harmonic maps, Geometry seminar “Luigi Bianchi” II — 1984 1164 (1985), 85-159, Springer, Berlin Zbl0592.58009MR829229
- H. Rossi, LeBrun’s nonrealizability theorem in higher dimensions, Duke Math. J. 52 (1985), 457-474 Zbl0573.32018MR792182
- Y. T. Siu, The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. (2) 112 (1980), 73-111 Zbl0517.53058MR584075
- J. C. Wood, Harmonic morphisms between Riemannian manifolds, Modern Trends in Geometry and Topology (2006), 397-414 Zbl1135.53043MR2250232
- K. Yano, On a structure defined by a tensor field of type satisfying , Tensor (N.S.) 14 (1963), 99-109 Zbl0122.40705MR159296
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.