Universal isomonodromic deformations of meromorphic rank 2 connections on curves

Viktoria Heu[1]

  • [1] IRMAR Campus de Beaulieu 35042 Rennes cedex (France)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 2, page 515-549
  • ISSN: 0373-0956

Abstract

top
We consider tracefree meromorphic rank 2 connections over compact Riemann surfaces of arbitrary genus. By deforming the curve, the position of the poles and the connection, we construct the global universal isomonodromic deformation of such a connection. Our construction, which is specific to the tracefree rank 2 case, does not need any Stokes analysis for irregular singularities. It is thereby more elementary than the construction in arbitrary rank due to B. Malgrange and I. Krichever and it includes the case of resonant singularities in a natural way.

How to cite

top

Heu, Viktoria. "Universal isomonodromic deformations of meromorphic rank 2 connections on curves." Annales de l’institut Fourier 60.2 (2010): 515-549. <http://eudml.org/doc/116280>.

@article{Heu2010,
abstract = {We consider tracefree meromorphic rank 2 connections over compact Riemann surfaces of arbitrary genus. By deforming the curve, the position of the poles and the connection, we construct the global universal isomonodromic deformation of such a connection. Our construction, which is specific to the tracefree rank 2 case, does not need any Stokes analysis for irregular singularities. It is thereby more elementary than the construction in arbitrary rank due to B. Malgrange and I. Krichever and it includes the case of resonant singularities in a natural way.},
affiliation = {IRMAR Campus de Beaulieu 35042 Rennes cedex (France)},
author = {Heu, Viktoria},
journal = {Annales de l’institut Fourier},
keywords = {Isomonodromic deformation; meromorphic connection; isomonodromic deformation},
language = {eng},
number = {2},
pages = {515-549},
publisher = {Association des Annales de l’institut Fourier},
title = {Universal isomonodromic deformations of meromorphic rank 2 connections on curves},
url = {http://eudml.org/doc/116280},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Heu, Viktoria
TI - Universal isomonodromic deformations of meromorphic rank 2 connections on curves
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 2
SP - 515
EP - 549
AB - We consider tracefree meromorphic rank 2 connections over compact Riemann surfaces of arbitrary genus. By deforming the curve, the position of the poles and the connection, we construct the global universal isomonodromic deformation of such a connection. Our construction, which is specific to the tracefree rank 2 case, does not need any Stokes analysis for irregular singularities. It is thereby more elementary than the construction in arbitrary rank due to B. Malgrange and I. Krichever and it includes the case of resonant singularities in a natural way.
LA - eng
KW - Isomonodromic deformation; meromorphic connection; isomonodromic deformation
UR - http://eudml.org/doc/116280
ER -

References

top
  1. Joël Briançon, Extensions de Deligne pour les croisements normaux, Éléments de la théorie des systèmes différentiels géométriques 8 (2004), 149-164, Soc. Math. France, Paris Zbl1070.32006MR2077648
  2. Pierre Deligne, Équations différentielles à points singuliers réguliers, (1970), Springer-Verlag, Berlin Zbl0244.14004MR417174
  3. Jean-Paul Dufour, Nguyen Tien Zung, Poisson structures and their normal forms, 242 (2005), Birkhäuser Verlag, Basel Zbl1082.53078MR2178041
  4. Wolfgang Fischer, Hans Grauert, Lokal-triviale Familien kompakter komplexer Mannigfaltigkeiten, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1965 (1965), 89-94 Zbl0135.12601MR184258
  5. Viktoria Heu, Déformations isomonodromiques des connexions de rang 2 sur les courbes, (2008) 
  6. John Hamal Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1, (2006), Matrix Editions, Ithaca, NY Zbl1102.30001MR2245223
  7. Nicholas M. Katz, An overview of Deligne’s work on Hilbert’s twenty-first problem, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, Ill., 1974) (1976), 537-557, Amer. Math. Soc., Providence, R. I. Zbl0347.14010MR432640
  8. I. Krichever, Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations, Mosc. Math. J. 2 (2002), 717-752, 806 Zbl1044.70010MR1986088
  9. Frank Loray, Jorge Vitório Pereira, Transversely projective foliations on surfaces: existence of minimal form and prescription of monodromy, Internat. J. Math. 18 (2007), 723-747 Zbl1124.37028MR2337401
  10. B. Malgrange, Déformations de systèmes différentiels et microdifférentiels, Mathematics and physics (Paris, 1979/1982) 37 (1983), 353-379, Birkhäuser Boston, Boston, MA Zbl0528.32016MR728429
  11. B. Malgrange, Sur les déformations isomonodromiques. I. Singularités régulières, Mathematics and physics (Paris, 1979/1982) 37 (1983), 401-426, Birkhäuser Boston, Boston, MA Zbl0528.32017MR728431
  12. B. Malgrange, Sur les déformations isomonodromiques. II. Singularités irrégulières, Mathematics and physics (Paris, 1979/1982) 37 (1983), 427-438, Birkhäuser Boston, Boston, MA Zbl0528.32018MR728432
  13. Bernard Malgrange, Deformations of differential systems. II, J. Ramanujan Math. Soc. 1 (1986), 3-15 Zbl0687.32019MR945599
  14. Bernard Malgrange, Connexions méromorphes 2 Le réseau canonique, Invent. math. (1996), 367-387 Zbl0849.32003MR1369422
  15. Bernard Malgrange, Déformations isomonodromiques, forme de Liouville, fonction τ , Ann. Inst. Fourier (Grenoble) 54 (2004), 1371-1392, xiv, xx Zbl1086.34071MR2127851
  16. J.-F. Mattei, Modules de feuilletages holomorphes singuliers. I. Équisingularité, Invent. Math. 103 (1991), 297-325 Zbl0709.32025MR1085109
  17. Jean-François Mattei, Marcel Nicolau, Equisingular unfoldings of foliations by curves, Astérisque (1994), 6, 285-302 Zbl0826.32026MR1285392
  18. Jürgen Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286-294 Zbl0141.19407MR182927
  19. Subhashis Nag, The complex analytic theory of Teichmüller spaces, (1988), John Wiley & Sons Inc., New York Zbl0667.30040MR927291
  20. Kazuo Okamoto, Isomonodromic deformation and Painlevé equations, and the Garnier system, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), 575-618 Zbl0631.34011MR866050
  21. John Palmer, Zeros of the Jimbo, Miwa, Ueno tau function, J. Math. Phys. 40 (1999), 6638-6681 Zbl0974.34081MR1725878
  22. V. S. Varadarajan, Linear meromorphic differential equations: a modern point of view, Bull. Amer. Math. Soc. (N.S.) 33 (1996), 1-42 Zbl0862.34004MR1339809

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.