Positivity properties of toric vector bundles
Milena Hering[1]; Mircea Mustaţă[2]; Sam Payne[3]
- [1] University of Connecticut Department of Mathematics 196 Auditorium Road U-3009 Storrs CT 06269-3009 (USA)
- [2] University of Michigan Department of Mathematics East Hall Ann Arbor, MI 48109 (USA)
- [3] Stanford University Department of Mathematics Bldg 380 Stanford, CA 94305 (USA)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 2, page 607-640
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHering, Milena, Mustaţă, Mircea, and Payne, Sam. "Positivity properties of toric vector bundles." Annales de l’institut Fourier 60.2 (2010): 607-640. <http://eudml.org/doc/116283>.
@article{Hering2010,
abstract = {We show that a torus-equivariant vector bundle on a complete toric variety is nef or ample if and only if its restriction to every invariant curve is nef or ample, respectively. Furthermore, we show that nef toric vector bundles have a nonvanishing global section at every point and deduce that the underlying vector bundle is trivial if and only if its restriction to every invariant curve is trivial. We apply our methods and results to study, in particular, the vector bundles $\mathcal\{M\}_L$ that arise as the kernel of the evaluation map $H^0(X,L) \otimes \mathcal\{O\}_X \rightarrow L$, for ample line bundles $L$. We give examples of twists of such bundles that are ample but not globally generated.},
affiliation = {University of Connecticut Department of Mathematics 196 Auditorium Road U-3009 Storrs CT 06269-3009 (USA); University of Michigan Department of Mathematics East Hall Ann Arbor, MI 48109 (USA); Stanford University Department of Mathematics Bldg 380 Stanford, CA 94305 (USA)},
author = {Hering, Milena, Mustaţă, Mircea, Payne, Sam},
journal = {Annales de l’institut Fourier},
keywords = {Toric variety; toric vector bundle; toric varieties},
language = {eng},
number = {2},
pages = {607-640},
publisher = {Association des Annales de l’institut Fourier},
title = {Positivity properties of toric vector bundles},
url = {http://eudml.org/doc/116283},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Hering, Milena
AU - Mustaţă, Mircea
AU - Payne, Sam
TI - Positivity properties of toric vector bundles
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 2
SP - 607
EP - 640
AB - We show that a torus-equivariant vector bundle on a complete toric variety is nef or ample if and only if its restriction to every invariant curve is nef or ample, respectively. Furthermore, we show that nef toric vector bundles have a nonvanishing global section at every point and deduce that the underlying vector bundle is trivial if and only if its restriction to every invariant curve is trivial. We apply our methods and results to study, in particular, the vector bundles $\mathcal{M}_L$ that arise as the kernel of the evaluation map $H^0(X,L) \otimes \mathcal{O}_X \rightarrow L$, for ample line bundles $L$. We give examples of twists of such bundles that are ample but not globally generated.
LA - eng
KW - Toric variety; toric vector bundle; toric varieties
UR - http://eudml.org/doc/116283
ER -
References
top- S. Boucksom, J.-P. Demailly, M. Păun, T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension Zbl1267.32017
- M. Brion, S. Kumar, Frobenius splitting methods in geometry and representation theory, 231 (2005), Birkhäuser Boston, Inc., Boston, MA Zbl1072.14066MR2107324
- W. Bruns, J. Gubeladze, N. Trung, Normal polytopes, triangulations, and Koszul algebras, Journal für die Reine und Angewandte Mathematik 485 (1997), 123-160. Zbl0866.20050MR1442191
- F. Campana, H. Flenner, A characterization of ample vector bundles on a curve, Math. Ann. 287 (1990), 571-575 Zbl0728.14033MR1066815
- D. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), 17-50 Zbl0846.14032MR1299003
- S. Di Rocco, Generation of -jets on toric varieties, Math. Z. 231 (1999), 169-188 Zbl0941.14020MR1696762
- F. Digne, J. Michel, Representations of finite groups of Lie type, 21 (1991), Cambridge University Press, Cambridge Zbl0815.20014MR1118841
- L. Ein, R. Lazarsfeld, Stability and restrictions of Picard bundles, with an application to the normal bundles of elliptic curves, Complex projective geometry (Trieste, 1989/Bergen, 1989) 179 (1992), 149-156, Cambridge Univ. Press, Cambridge Zbl0768.14012MR1201380
- J. Elizondo, The ring of global sections of multiples of a line bundle on a toric variety, Proc. Amer. Math. Soc. 125 (1997), 2527-2529 Zbl0883.14002MR1401739
- G. Ewald, U. Wessels, On the ampleness of invertible sheaves in complete projective toric varieties, Results in Mathematics 19 (1991), 275-278 Zbl0739.14031MR1100674
- N. Fakhruddin, Multiplication maps of linear systems on projective toric surfaces Zbl1053.14025
- O. Fujino, Multiplication maps and vanishing theorems for toric varieties, Math. Z. 257 (2007), 631-641 Zbl1129.14029MR2328817
- W. Fulton, Introduction to toric varieties, 131 (1993), Princeton Univ. Press, Princeton, NJ Zbl0813.14039MR1234037
- W. Fulton, R. Lazarsfeld, Positive polynomials for ample vector bundles, Ann. Math. 118 (1983), 35-60 Zbl0537.14009MR707160
- M. L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), 125-171 Zbl0559.14008MR739785
- M. L. Green, Koszul cohomology and the geometry of projective varieties II, J. Differential Geom. 20 (1984), 279-289 Zbl0559.14009MR772134
- P. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis (Papers in Honor of K. Kodaira) 29 (1969), 185-251, Princeton University Press Zbl0201.24001MR258070
- Christian Haase, Benjamin Nill, Andreas Paffenholz, Francisco Santos, Lattice points in Minkowski sums, Electron. J. Combin. 15 (2008) Zbl1160.52009MR2398828
- C. Hacon, Remarks on Seshadri constants of vector bundles, Ann. Inst. Fourier 50 (2000), 767-780 Zbl0956.14034MR1779893
- R. Hartshorne, Ample subvarieties of algebraic varieties, 156 (1970), Springer-Verlag, Berlin-New York Zbl0208.48901MR282977
- Y. Hu, S. Keel, Mori Dream Spaces and GIT, Michigan Math. J. 48 (2000), 331-348 Zbl1077.14554MR1786494
- E. Katz, S. Payne, Piecewise polynomials, Minkowski weights, and localization on toric varieties, Algebra Number Theory 2 (2008), 135-155 Zbl1158.14042MR2377366
- A. Klyachko, Equivariant vector bundles on toral varieties, Math. USSR-Izv. 35 (1990), 337-375 Zbl0706.14010MR1024452
- S. Kumar, Equivariant analogue of Grothendieck’s theorem for vector bundles on , A tribute to C. S. Seshadri (Chennai, 2002) (2003), 500-501, Birkhäuser, Basel Zbl1054.14528MR2017599
- R. Lazarsfeld, Positivity in algebraic geometry I, II, 48 and 49 (2004), Springer-Verlag, Berlin Zbl1093.14500MR2095471
- J. Liu, L. Trotter Jr., G. Ziegler, On the height of the minimal Hilbert basis, Results in Mathematics 23 (1993), 374-376 Zbl0779.52002MR1215222
- L. Manivel, Théorèmes d’annulation sur certaines variétés projectives, Comment. Math. Helv. 71 (1996), 402-425 Zbl0883.14004MR1418945
- Mircea Mustaţă, Vanishing theorems on toric varieties, Tohoku Math. J. (2) 54 (2002), 451-470 Zbl1092.14064MR1916637
- T. Oda, Problems on Minkowski sums of convex lattice polytopes
- T. Oda, Convex bodies and algebraic geometry, (1988), Springer Verlag, Berlin Heidelberg New York Zbl0628.52002MR922894
- C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, 3 (1980), Birkhäuser, Boston, Mass. Zbl0438.32016MR561910
- K. Paranjape, S. Ramanan, On the canonical ring of a curve, Algebraic geometry and commutative algebra II (1988), 503-516, Kinokuriya Zbl0699.14041MR977775
- S. Payne, Equivariant Chow cohomology of toric varieties, Math. Res. Lett. 13 (2006), 29-41 Zbl1094.14036MR2199564
- S. Payne, Stable base loci, movable curves, and small modifications, for toric varieties, Math. Z. 253 (2006), 421-431 Zbl1097.14007MR2218709
- S. Payne, Moduli of toric vector bundles, Compositio Math. 144 (2008), 1199-1213 Zbl1159.14021MR2457524
- S. Payne, Toric vector bundles, branched covers of fans, and the resolution property, J. Alg. Geom. 18 (2009), 1-36 Zbl1161.14039MR2448277
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.