Positivity properties of toric vector bundles

Milena Hering[1]; Mircea Mustaţă[2]; Sam Payne[3]

  • [1] University of Connecticut Department of Mathematics 196 Auditorium Road U-3009 Storrs CT 06269-3009 (USA)
  • [2] University of Michigan Department of Mathematics East Hall Ann Arbor, MI 48109 (USA)
  • [3] Stanford University Department of Mathematics Bldg 380 Stanford, CA 94305 (USA)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 2, page 607-640
  • ISSN: 0373-0956

Abstract

top
We show that a torus-equivariant vector bundle on a complete toric variety is nef or ample if and only if its restriction to every invariant curve is nef or ample, respectively. Furthermore, we show that nef toric vector bundles have a nonvanishing global section at every point and deduce that the underlying vector bundle is trivial if and only if its restriction to every invariant curve is trivial. We apply our methods and results to study, in particular, the vector bundles L that arise as the kernel of the evaluation map H 0 ( X , L ) 𝒪 X L , for ample line bundles L . We give examples of twists of such bundles that are ample but not globally generated.

How to cite

top

Hering, Milena, Mustaţă, Mircea, and Payne, Sam. "Positivity properties of toric vector bundles." Annales de l’institut Fourier 60.2 (2010): 607-640. <http://eudml.org/doc/116283>.

@article{Hering2010,
abstract = {We show that a torus-equivariant vector bundle on a complete toric variety is nef or ample if and only if its restriction to every invariant curve is nef or ample, respectively. Furthermore, we show that nef toric vector bundles have a nonvanishing global section at every point and deduce that the underlying vector bundle is trivial if and only if its restriction to every invariant curve is trivial. We apply our methods and results to study, in particular, the vector bundles $\mathcal\{M\}_L$ that arise as the kernel of the evaluation map $H^0(X,L) \otimes \mathcal\{O\}_X \rightarrow L$, for ample line bundles $L$. We give examples of twists of such bundles that are ample but not globally generated.},
affiliation = {University of Connecticut Department of Mathematics 196 Auditorium Road U-3009 Storrs CT 06269-3009 (USA); University of Michigan Department of Mathematics East Hall Ann Arbor, MI 48109 (USA); Stanford University Department of Mathematics Bldg 380 Stanford, CA 94305 (USA)},
author = {Hering, Milena, Mustaţă, Mircea, Payne, Sam},
journal = {Annales de l’institut Fourier},
keywords = {Toric variety; toric vector bundle; toric varieties},
language = {eng},
number = {2},
pages = {607-640},
publisher = {Association des Annales de l’institut Fourier},
title = {Positivity properties of toric vector bundles},
url = {http://eudml.org/doc/116283},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Hering, Milena
AU - Mustaţă, Mircea
AU - Payne, Sam
TI - Positivity properties of toric vector bundles
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 2
SP - 607
EP - 640
AB - We show that a torus-equivariant vector bundle on a complete toric variety is nef or ample if and only if its restriction to every invariant curve is nef or ample, respectively. Furthermore, we show that nef toric vector bundles have a nonvanishing global section at every point and deduce that the underlying vector bundle is trivial if and only if its restriction to every invariant curve is trivial. We apply our methods and results to study, in particular, the vector bundles $\mathcal{M}_L$ that arise as the kernel of the evaluation map $H^0(X,L) \otimes \mathcal{O}_X \rightarrow L$, for ample line bundles $L$. We give examples of twists of such bundles that are ample but not globally generated.
LA - eng
KW - Toric variety; toric vector bundle; toric varieties
UR - http://eudml.org/doc/116283
ER -

References

top
  1. S. Boucksom, J.-P. Demailly, M. Păun, T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension Zbl1267.32017
  2. M. Brion, S. Kumar, Frobenius splitting methods in geometry and representation theory, 231 (2005), Birkhäuser Boston, Inc., Boston, MA Zbl1072.14066MR2107324
  3. W. Bruns, J. Gubeladze, N. Trung, Normal polytopes, triangulations, and Koszul algebras, Journal für die Reine und Angewandte Mathematik 485 (1997), 123-160. Zbl0866.20050MR1442191
  4. F. Campana, H. Flenner, A characterization of ample vector bundles on a curve, Math. Ann. 287 (1990), 571-575 Zbl0728.14033MR1066815
  5. D. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), 17-50 Zbl0846.14032MR1299003
  6. S. Di Rocco, Generation of k -jets on toric varieties, Math. Z. 231 (1999), 169-188 Zbl0941.14020MR1696762
  7. F. Digne, J. Michel, Representations of finite groups of Lie type, 21 (1991), Cambridge University Press, Cambridge Zbl0815.20014MR1118841
  8. L. Ein, R. Lazarsfeld, Stability and restrictions of Picard bundles, with an application to the normal bundles of elliptic curves, Complex projective geometry (Trieste, 1989/Bergen, 1989) 179 (1992), 149-156, Cambridge Univ. Press, Cambridge Zbl0768.14012MR1201380
  9. J. Elizondo, The ring of global sections of multiples of a line bundle on a toric variety, Proc. Amer. Math. Soc. 125 (1997), 2527-2529 Zbl0883.14002MR1401739
  10. G. Ewald, U. Wessels, On the ampleness of invertible sheaves in complete projective toric varieties, Results in Mathematics 19 (1991), 275-278 Zbl0739.14031MR1100674
  11. N. Fakhruddin, Multiplication maps of linear systems on projective toric surfaces Zbl1053.14025
  12. O. Fujino, Multiplication maps and vanishing theorems for toric varieties, Math. Z. 257 (2007), 631-641 Zbl1129.14029MR2328817
  13. W. Fulton, Introduction to toric varieties, 131 (1993), Princeton Univ. Press, Princeton, NJ Zbl0813.14039MR1234037
  14. W. Fulton, R. Lazarsfeld, Positive polynomials for ample vector bundles, Ann. Math. 118 (1983), 35-60 Zbl0537.14009MR707160
  15. M. L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), 125-171 Zbl0559.14008MR739785
  16. M. L. Green, Koszul cohomology and the geometry of projective varieties II, J. Differential Geom. 20 (1984), 279-289 Zbl0559.14009MR772134
  17. P. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis (Papers in Honor of K. Kodaira) 29 (1969), 185-251, Princeton University Press Zbl0201.24001MR258070
  18. Christian Haase, Benjamin Nill, Andreas Paffenholz, Francisco Santos, Lattice points in Minkowski sums, Electron. J. Combin. 15 (2008) Zbl1160.52009MR2398828
  19. C. Hacon, Remarks on Seshadri constants of vector bundles, Ann. Inst. Fourier 50 (2000), 767-780 Zbl0956.14034MR1779893
  20. R. Hartshorne, Ample subvarieties of algebraic varieties, 156 (1970), Springer-Verlag, Berlin-New York Zbl0208.48901MR282977
  21. Y. Hu, S. Keel, Mori Dream Spaces and GIT, Michigan Math. J. 48 (2000), 331-348 Zbl1077.14554MR1786494
  22. E. Katz, S. Payne, Piecewise polynomials, Minkowski weights, and localization on toric varieties, Algebra Number Theory 2 (2008), 135-155 Zbl1158.14042MR2377366
  23. A. Klyachko, Equivariant vector bundles on toral varieties, Math. USSR-Izv. 35 (1990), 337-375 Zbl0706.14010MR1024452
  24. S. Kumar, Equivariant analogue of Grothendieck’s theorem for vector bundles on 1 , A tribute to C. S. Seshadri (Chennai, 2002) (2003), 500-501, Birkhäuser, Basel Zbl1054.14528MR2017599
  25. R. Lazarsfeld, Positivity in algebraic geometry I, II, 48 and 49 (2004), Springer-Verlag, Berlin Zbl1093.14500MR2095471
  26. J. Liu, L. Trotter Jr., G. Ziegler, On the height of the minimal Hilbert basis, Results in Mathematics 23 (1993), 374-376 Zbl0779.52002MR1215222
  27. L. Manivel, Théorèmes d’annulation sur certaines variétés projectives, Comment. Math. Helv. 71 (1996), 402-425 Zbl0883.14004MR1418945
  28. Mircea Mustaţă, Vanishing theorems on toric varieties, Tohoku Math. J. (2) 54 (2002), 451-470 Zbl1092.14064MR1916637
  29. T. Oda, Problems on Minkowski sums of convex lattice polytopes 
  30. T. Oda, Convex bodies and algebraic geometry, (1988), Springer Verlag, Berlin Heidelberg New York Zbl0628.52002MR922894
  31. C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, 3 (1980), Birkhäuser, Boston, Mass. Zbl0438.32016MR561910
  32. K. Paranjape, S. Ramanan, On the canonical ring of a curve, Algebraic geometry and commutative algebra II (1988), 503-516, Kinokuriya Zbl0699.14041MR977775
  33. S. Payne, Equivariant Chow cohomology of toric varieties, Math. Res. Lett. 13 (2006), 29-41 Zbl1094.14036MR2199564
  34. S. Payne, Stable base loci, movable curves, and small modifications, for toric varieties, Math. Z. 253 (2006), 421-431 Zbl1097.14007MR2218709
  35. S. Payne, Moduli of toric vector bundles, Compositio Math. 144 (2008), 1199-1213 Zbl1159.14021MR2457524
  36. S. Payne, Toric vector bundles, branched covers of fans, and the resolution property, J. Alg. Geom. 18 (2009), 1-36 Zbl1161.14039MR2448277

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.