On a generalized Calabi-Yau equation
Hongyu Wang[1]; Peng Zhu[2]
- [1] Yangzhou University School of Mathematical Science Yangzhou, Jiangsu 225002 (P. R. China)
- [2] School of Mathematical Science, Yangzhou University, Yangzhou, Jiangsu 225002, (P. R. China)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 5, page 1595-1615
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topWang, Hongyu, and Zhu, Peng. "On a generalized Calabi-Yau equation." Annales de l’institut Fourier 60.5 (2010): 1595-1615. <http://eudml.org/doc/116315>.
@article{Wang2010,
abstract = {Dealing with the generalized Calabi-Yau equation proposed by Gromov on closed almost-Kähler manifolds, we extend to arbitrary dimension a non-existence result proved in complex dimension $2$.},
affiliation = {Yangzhou University School of Mathematical Science Yangzhou, Jiangsu 225002 (P. R. China); School of Mathematical Science, Yangzhou University, Yangzhou, Jiangsu 225002, (P. R. China)},
author = {Wang, Hongyu, Zhu, Peng},
journal = {Annales de l’institut Fourier},
keywords = {Calabi-Yau equation; symplectic form; almost complex structure; Hermitian metric; Nijenhuis tensor; pseudo holomorphic function; pseudo-holomorphic function},
language = {eng},
number = {5},
pages = {1595-1615},
publisher = {Association des Annales de l’institut Fourier},
title = {On a generalized Calabi-Yau equation},
url = {http://eudml.org/doc/116315},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Wang, Hongyu
AU - Zhu, Peng
TI - On a generalized Calabi-Yau equation
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 5
SP - 1595
EP - 1615
AB - Dealing with the generalized Calabi-Yau equation proposed by Gromov on closed almost-Kähler manifolds, we extend to arbitrary dimension a non-existence result proved in complex dimension $2$.
LA - eng
KW - Calabi-Yau equation; symplectic form; almost complex structure; Hermitian metric; Nijenhuis tensor; pseudo holomorphic function; pseudo-holomorphic function
UR - http://eudml.org/doc/116315
ER -
References
top- M. Audin, P. Gauduchon, Symplectic and almost complex manifolds, 117 (1994), 41-76, in Holomorphic curves in symplectic geometry, Ed. by M. Audin and J. Lafontaine MR1274926
- E. Calabi, The space of Kähler metrics, 2 (1954), 206-207, in Proceeding of the International Congress of Mathematicians
- P. Delanoë, Sur l’analogue presque-complexe de l’équation de Calabi-Yau, Osaka J. Math. 33 (1996), 829-846 Zbl0878.53030MR1435456
- S. K. Donaldson, Two forms on four manifolds and elliptic equations, in Inspired by S. S. Chern, (2006), 153-172, World Sci. Publ., Hackensack, NJ Zbl1140.58018MR2313334
- C. Ehresmann, P. Libermann, Sur les structures presque hermitiennes isotropes, C. R. Acad. Sci. Paris 232 (1951), 1281-1283 Zbl0042.15904MR40790
- P. Gauduchon, Hermitian connections and Dirac operators, Bull. Un. Mat. Ital. B 11 (no. 2, suppl.) (1997), 257-288 Zbl0876.53015MR1456265
- M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347 Zbl0592.53025MR809718
- D. McDuff, D. Salamon, Introduction to symplectic topology, (1998), Oxford University Press Zbl0844.58029MR1698616
- J. Moser, On the volume elements of a manifold, Trans. AMS 120 (1965), 286-294 Zbl0141.19407MR182927
- V. Tosatti, B. Weinkove, S. Y. Yau, Taming symplectic forms and the Calabi-Yau equation, Proc. London Math. Soc. 97 (2008), 401-424 Zbl1153.53054MR2439667
- H. Wang, P. Zhu, Calabi-Yau equation on closed symplectic 4-manifolds
- B. Weinkove, The Calabi-Yau equation on almost Kähler four manifolds, J. Diff. Geom. 76 (2007), 317-349 Zbl1123.32015MR2330417
- H. Weyl, The Classical groups, 1 (1973), Princeton University Press Zbl1024.20502MR1488158
- S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978), 339-411 Zbl0369.53059MR480350
- P. Zhu, On almost Hermitian manifolds, (2008) Zbl1199.53050
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.