Geometric optics expansions with amplification for hyperbolic boundary value problems: Linear problems
Jean-François Coulombel[1]; Olivier Guès[2]
- [1] CNRS & Université Lille 1 Laboratoire Paul Painlevé (UMR CNRS 8524) and Project Team SIMPAF of INRIA Lille Nord Europe Cité scientifique, Bâtiment M2 59655 VILLENEUVE D’ASCQ Cedex (France)
- [2] Université de Provence Laboratoire d’Analyse, Topologie et Probabilités (UMR CNRS 6632) Technopôle Château-Gombert 39 rue F. Joliot Curie 13453 MARSEILLE Cedex 13 (France)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 6, page 2183-2233
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Artola, Nonlinear development of instabilities in supersonic vortex sheets. I. The basic kink modes, Phys. D 28 (1987), 253-281 Zbl0632.76074MR914450
- S. Benzoni-Gavage, F. Rousset, D. Serre, K. Zumbrun, Generic types and transitions in hyperbolic initial-boundary-value problems, Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), 1073-1104 Zbl1029.35165MR1938714
- S. Benzoni-Gavage, Multidimensional hyperbolic partial differential equations, (2007), Oxford University Press Zbl1113.35001MR2284507
- J. Chazarain, Caractérisation des problèmes mixtes hyperboliques bien posés, Ann. Inst. Fourier (Grenoble) 22 (1972), 193-237 Zbl0234.35052MR333469
- J. Chikhi, Sur la réflexion des oscillations pour un système à deux vitesses, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), 675-678 Zbl0746.35020MR1135437
- J.-F. Coulombel, Well-posedness of hyperbolic initial boundary value problems, J. Math. Pures Appl. (9) 84 (2005), 786-818 Zbl1078.35066MR2138641
- J.-F. Coulombel, The hyperbolic region for hyperbolic boundary value problems, (2008) Zbl1237.35106
- W. Domański, Surface and boundary waves for linear hyperbolic systems: applications to basic equations of electrodynamics and mechanics of continuum, J. Tech. Phys. 30 (1989), 283-300 MR1081053
- O. Guès, Développement asymptotique de solutions exactes de systèmes hyperboliques quasilinéaires, Asymptotic Anal. 6 (1993), 241-269 Zbl0780.35017MR1201195
- M. Ikawa, Mixed problem for the wave equation with an oblique derivative boundary condition, Osaka J. Math. 7 (1970), 495-525 Zbl0218.35060MR289947
- J.-L. Joly, G. Métivier, J. Rauch, Coherent and focusing multidimensional nonlinear geometric optics, Ann. Sci. École Norm. Sup. (4) 28 (1995), 51-113 Zbl0836.35087MR1305424
- H.-O. Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 277-298 Zbl0193.06902MR437941
- P. D. Lax, Asymptotic solutions of oscillatory initial value problems, Duke Math. J. 24 (1957), 627-646 Zbl0083.31801MR97628
- V. Lescarret, Wave transmission in dispersive media, Math. Models Methods Appl. Sci. 17 (2007), 485-535 Zbl1220.35170MR2316297
- A. Majda, Nonlinear geometric optics for hyperbolic mixed problems, Analyse mathématique et applications (1988), 319-356, Gauthier-Villars Zbl0674.35057MR956966
- A. Majda, A theory for spontaneous Mach stem formation in reacting shock fronts. I. The basic perturbation analysis, SIAM J. Appl. Math. 43 (1983), 1310-1334 Zbl0544.76135MR722944
- A. Marcou, Rigorous weakly nonlinear geometric optics for surface waves, (2009) Zbl1222.35118
- G. Métivier, The block structure condition for symmetric hyperbolic systems, Bull. London Math. Soc. 32 (2000), 689-702 Zbl1073.35525MR1781581
- T. Ohkubo, On structures of certain -well-posed mixed problems for hyperbolic systems of first order, Hokkaido Math. J. 4 (1975), 82-158 Zbl0304.35067MR380131
- Jeffrey Rauch, Markus Keel, Lectures on geometric optics, Hyperbolic equations and frequency interactions (Park City, UT, 1995) 5 (1999), 383-466, Amer. Math. Soc., Providence, RI Zbl0926.35003MR1662833
- M. Sablé-Tougeron, Existence pour un problème de l’élastodynamique Neumann non linéaire en dimension , Arch. Rational Mech. Anal. 101 (1988), 261-292 Zbl0652.73019MR930125
- M. Williams, Nonlinear geometric optics for hyperbolic boundary problems, Comm. Partial Differential Equations 21 (1996), 1829-1895 Zbl0881.35068MR1421213
- M. Williams, Boundary layers and glancing blow-up in nonlinear geometric optics, Ann. Sci. École Norm. Sup. (4) 33 (2000), 383-432 Zbl0962.35118MR1775187
- M. Williams, Singular pseudodifferential operators, symmetrizers, and oscillatory multidimensional shocks, J. Funct. Anal. 191 (2002), 132-209 Zbl1028.35174MR1909266