Asymptotic values of minimal graphs in a disc
Pascal Collin[1]; Harold Rosenberg[2]
- [1] Institut de Mathématiques de Toulouse Université Paul Sabatier 118, route de Narbonne 31062 Toulouse Cedex 9 (France)
- [2] IMPA, 22460-320 Estrada Dona Castorina 110 Rio de Janeiro (Brasil)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 7, page 2357-2372
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCollin, Pascal, and Rosenberg, Harold. "Asymptotic values of minimal graphs in a disc." Annales de l’institut Fourier 60.7 (2010): 2357-2372. <http://eudml.org/doc/116337>.
@article{Collin2010,
abstract = {We consider solutions of the prescribed mean curvature equation in the open unit disc of euclidean n-dimensional space. We prove that such a solution has radial limits almost everywhere; which may be infinite. We give an example of a solution to the minimal surface equation that has finite radial limits on a set of measure zero, in dimension two. This answers a question of Nitsche.},
affiliation = {Institut de Mathématiques de Toulouse Université Paul Sabatier 118, route de Narbonne 31062 Toulouse Cedex 9 (France); IMPA, 22460-320 Estrada Dona Castorina 110 Rio de Janeiro (Brasil)},
author = {Collin, Pascal, Rosenberg, Harold},
journal = {Annales de l’institut Fourier},
keywords = {Minimal graphs; radial limits; Fatou theorem; minimal graphs},
language = {eng},
number = {7},
pages = {2357-2372},
publisher = {Association des Annales de l’institut Fourier},
title = {Asymptotic values of minimal graphs in a disc},
url = {http://eudml.org/doc/116337},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Collin, Pascal
AU - Rosenberg, Harold
TI - Asymptotic values of minimal graphs in a disc
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 7
SP - 2357
EP - 2372
AB - We consider solutions of the prescribed mean curvature equation in the open unit disc of euclidean n-dimensional space. We prove that such a solution has radial limits almost everywhere; which may be infinite. We give an example of a solution to the minimal surface equation that has finite radial limits on a set of measure zero, in dimension two. This answers a question of Nitsche.
LA - eng
KW - Minimal graphs; radial limits; Fatou theorem; minimal graphs
UR - http://eudml.org/doc/116337
ER -
References
top- P. Collin, H. Rosenberg, Construction of harmonic diffeomorphisms and minimal graphs Zbl1209.53010
- H. Jenkins, J. Serrin, Variational problems of minimal surface type II. Boundary value problems for the minimal surface equation, Arch. Rational Mech. Anal. 21 (1966), 321-342 Zbl0171.08301MR190811
- V. Mikyukov, Two theorems on boundary properties of minimal surfaces in nonparametric form, Math. Notes 21 (1977), 307-310 Zbl0402.53003MR474055
- J. Nitsche, On new results in the theory of minimal surfaces, B. Amer. Math. Soc. 71 (1965), 195-270 Zbl0135.21701MR173993
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.