Stability is not open
Kai Cieliebak[1]; Urs Frauenfelder[2]; Gabriel P. Paternain[3]
- [1] Ludwig-Maximilians-Universität Mathematisches Institut 80333 München (Germany)
- [2] Seoul National University Department of Mathematics Research Institute of Mathematics 151-747 Seoul (South Korea)
- [3] University of Cambridge Department of Pure Mathematics and Mathematical Statistics Cambridge CB3 0WB (UK)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 7, page 2449-2459
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCieliebak, Kai, Frauenfelder, Urs, and Paternain, Gabriel P.. "Stability is not open." Annales de l’institut Fourier 60.7 (2010): 2449-2459. <http://eudml.org/doc/116341>.
@article{Cieliebak2010,
abstract = {We give an example of a symplectic manifold with a stable hypersurface such that nearby hypersurfaces are typically unstable.},
affiliation = {Ludwig-Maximilians-Universität Mathematisches Institut 80333 München (Germany); Seoul National University Department of Mathematics Research Institute of Mathematics 151-747 Seoul (South Korea); University of Cambridge Department of Pure Mathematics and Mathematical Statistics Cambridge CB3 0WB (UK)},
author = {Cieliebak, Kai, Frauenfelder, Urs, Paternain, Gabriel P.},
journal = {Annales de l’institut Fourier},
keywords = {Stability; Hamiltonian structure; characteristic foliation; stability; Anosov Hamiltonian structure},
language = {eng},
number = {7},
pages = {2449-2459},
publisher = {Association des Annales de l’institut Fourier},
title = {Stability is not open},
url = {http://eudml.org/doc/116341},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Cieliebak, Kai
AU - Frauenfelder, Urs
AU - Paternain, Gabriel P.
TI - Stability is not open
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 7
SP - 2449
EP - 2459
AB - We give an example of a symplectic manifold with a stable hypersurface such that nearby hypersurfaces are typically unstable.
LA - eng
KW - Stability; Hamiltonian structure; characteristic foliation; stability; Anosov Hamiltonian structure
UR - http://eudml.org/doc/116341
ER -
References
top- D. V. Anosov, Ja. G. Sinaĭ, Certain smooth ergodic systems, Uspehi Mat. Nauk 22 (1967), 107-172 Zbl0177.42002MR224771
- F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki, E. Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003), 799-888 Zbl1131.53312MR2026549
- Kai Cieliebak, Urs Adrian Frauenfelder, A Floer homology for exact contact embeddings, Pacific J. Math. 239 (2009), 251-316 Zbl1221.53112MR2461235
- Kai Cieliebak, Urs Adrian Frauenfelder, Gabriel P. Paternain, Symplectic topology of Mañé’s critical values, Geometry and Topology 14 (2010), 1765-1870 Zbl1239.53110MR2679582
- Kai Cieliebak, K. Mohnke, Compactness for punctured holomorphic curves, J. Symplectic Geom. 3 (2005), 589-654 Zbl1113.53053MR2235856
- Kai Cieliebak, E. Volkov, First steps in stable Hamiltonian topology, (2010) Zbl1315.53097
- Y. Eliashberg, A. Givental, H. Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000), 560-673 Zbl0989.81114MR1826267
- Renato Feres, Geodesic flows on manifolds of negative curvature with smooth horospheric foliations, Ergodic Theory Dynam. Systems 11 (1991), 653-686 Zbl0727.58035MR1145615
- Boris Hasselblatt, Horospheric foliations and relative pinching, J. Differential Geom. 39 (1994), 57-63 Zbl0795.53026MR1258914
- Boris Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations, Ergodic Theory Dynam. Systems 14 (1994), 645-666 Zbl0821.58032MR1304137
- M. W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, (1977), Springer-Verlag, Berlin Zbl0355.58009MR501173
- Helmut Hofer, Eduard Zehnder, Symplectic invariants and Hamiltonian dynamics, (1994), Birkhäuser Verlag, Basel Zbl0805.58003MR1306732
- Masahiko Kanai, Differential-geometric studies on dynamics of geodesic and frame flows, Japan. J. Math. (N.S.) 19 (1993), 1-30 Zbl0798.58055MR1231509
- Anatole Katok, Boris Hasselblatt, Introduction to the modern theory of dynamical systems, 54 (1995), Cambridge University Press, Cambridge Zbl0878.58019MR1326374
- William Parry, Synchronisation of canonical measures for hyperbolic attractors, Comm. Math. Phys. 106 (1986), 267-275 Zbl0618.58026MR855312
- Gabriel P. Paternain, Geodesic flows, 180 (1999), Birkhäuser Boston Inc., Boston, MA Zbl0930.53001MR1712465
- Joseph F. Plante, Anosov flows, Amer. J. Math. 94 (1972), 729-754 Zbl0257.58007MR377930
- Victoria Sadovskaya, On uniformly quasiconformal Anosov systems, Math. Res. Lett. 12 (2005), 425-441 Zbl1081.37015MR2150895
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.