Algorithmes rapides pour les polynômes, séries formelles et matrices
Les cours du CIRM (2010)
- Volume: 1, Issue: 2, page 75-262
- ISSN: 2108-7164
Access Full Article
topHow to cite
topBostan, Alin. "Algorithmes rapides pour les polynômes, séries formelles et matrices." Les cours du CIRM 1.2 (2010): 75-262. <http://eudml.org/doc/116371>.
@article{Bostan2010,
author = {Bostan, Alin},
journal = {Les cours du CIRM},
language = {fre},
number = {2},
pages = {75-262},
publisher = {CIRM},
title = {Algorithmes rapides pour les polynômes, séries formelles et matrices},
url = {http://eudml.org/doc/116371},
volume = {1},
year = {2010},
}
TY - JOUR
AU - Bostan, Alin
TI - Algorithmes rapides pour les polynômes, séries formelles et matrices
JO - Les cours du CIRM
PY - 2010
PB - CIRM
VL - 1
IS - 2
SP - 75
EP - 262
LA - fre
UR - http://eudml.org/doc/116371
ER -
References
top- Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, The design and analysis of computer algorithms, (1974), Addison-Wesley Publishing Co. Zbl0326.68005MR413592
- Matthias Beck, Bruce C. Berndt, O-Yeat Chan, Alexandru Zaharescu, Determinations of Analogues of Gauss Sums and Other Trigonometric Sums, Int. J. Number Theory 1 (2005), 333-356 Zbl1088.11064MR2175096
- Peter Bürgisser, Michael Clausen, M. Amin Shokrollahi, Algebraic complexity theory, 315 (1997), Springer-Verlag, Berlin Zbl1087.68568
- Keith O. Geddes, Stephen R. Czapor, George Labahn, Algorithms for Computer Algebra, (1992), Kluwer Academic Publishers Zbl0805.68072
- Torbjörn Granlund, GNU Multiple Precision Arithmetic Library, (2006), http://swox.com/gmp
- Daniel Richardson, Some Undecidable Problems Involving Elementary Functions of a Real Variable, Journal of Symbolic Logic 33 (1968), 514-520 Zbl0175.27404MR239976
- Daniel Richardson, How to recognize zero, Journal of Symbolic Computation 24 (1997), 627-645 Zbl0917.11062MR1487790
- Joachim von zur Gathen, Jürgen Gerhard, Modern computer algebra, (1999), Cambridge University Press, New York Zbl0936.11069
- D. J. Bernstein, Multidigit multiplication for mathematicians
- Marco Bodrato, Alberto Zanoni, Integer and polynomial multiplication : towards optimal Toom-Cook matrices, ISSAC’07 (2007), 17-24, ACM, New York Zbl1190.68084MR2396179
- E. Oran Brigham, The fast Fourier transform, (1974), Prentice-Hall Zbl0375.65052
- Peter Bürgisser, Martin Lotz, Lower bounds on the bounded coefficient complexity of bilinear maps, J. ACM 51 (2004), 464-482 Zbl1192.68312MR2145861
- D. G. Cantor, E. Kaltofen, On Fast Multiplication of Polynomials over Arbitrary Algebras, Acta Informatica 28 (1991), 693-701 Zbl0766.68055MR1129288
- M. Cenk, C. K. Koc, F. Ozbudak, Polynomial Multiplication over Finite Fields Using Field Extensions and Interpolation, ARITH ’09 (2009), 84-91, IEEE Computer Society
- Jaewook Chung, M. Anwar Hasan, Asymmetric Squaring Formulae, ARITH ’07 : Proc. of the 18th IEEE Symp. on Computer Arithmetic (2007), 113-122, IEEE
- S. Cook, On the minimum computation time of functions, (1966)
- S. A. Cook, S. O. Aanderaa, On the minimum computation time of functions, Transactions of the American Mathematical Society 142 (1969), 291-314 Zbl0188.33402MR249212
- James W. Cooley, How the FFT gained acceptance, A history of scientific computing (Princeton, NJ, 1987) (1990), 133-140, ACM, New York MR1203104
- James W. Cooley, John W. Tukey, An algorithm for the machine calculation of complex Fourier series, Mathematics of Computation 19 (1965), 297-301 Zbl0127.09002MR178586
- James W. Cooley, John W. Tukey, On the Origin and Publication of the FFT Paper, Current Contents 33 (1993), 8-9
- A. De, P. P. Kurur, C. Saha, R. Saptharishi, Fast integer multiplication using modular arithmetic, STOC’08 (2008), 499-506, ACM, New York, NY, USA Zbl1231.68289MR2582908
- J. Dongarra, F. Sullivan, Top ten algorithms, Computing in Science & Engineering 2 (2000), 22-23
- P. Duhamel, M. Vetterli, Fast Fourier transforms : a tutorial review and a state of the art, Signal Processing. An Interdisciplinary Journal 19 (1990), 259-299 Zbl0704.65106MR1048328
- M. Frigo, S. G Johnson, The Design and Implementation of FFTW3, Proceedings of the IEEE 93 (2005), 216-231
- Martin Fürer, Faster integer multiplication, STOC’07—Proceedings of the 39th Annual ACM Symposium on Theory of Computing (2007), 57-66, ACM, New York Zbl1179.68198MR2402428
- Martin Fürer, Faster integer multiplication, SIAM J. Comput. 39 (2009), 979-1005 Zbl1192.68926MR2538847
- W. M. Gentleman, G. Sande, Fast Fourier Transforms : for fun and profit, AFIPS’66 (1966), 563-578, ACM, New York, NY, USA
- Guillaume Hanrot, Michel Quercia, Paul Zimmermann, The Middle Product Algorithm I, Appl. Algebra Engrg. Comm. Comput. 14 (2004), 415-438 Zbl1064.68094
- Michael T. Heideman, Don H. Johnson, C. Sidney Burrus, Gauss and the history of the fast Fourier transform, Arch. Hist. Exact Sci. 34 (1985), 265-277 Zbl0577.01027MR815154
- Michael Kaminski, A lower bound for polynomial multiplication, Theoret. Comput. Sci. 40 (1985), 319-322 Zbl0607.94010MR835422
- A. Karatsuba, Y. Ofman, Multiplication of multidigit numbers on automata, Soviet Physics Doklady 7 (1963), 595-596
- Robert T. Moenck, Another polynomial homomorphism, Acta Informat. 6 (1976), 153-169 Zbl0312.68024MR408306
- Peter L. Montgomery, Five, Six, and Seven-Term Karatsuba-Like Formulae, IEEE Trans. Comput. 54 (2005), 362-369 Zbl1171.11329
- Jacques Morgenstern, Note on a lower bound of the linear complexity of the fast Fourier transform, J. Assoc. Comput. Mach. 20 (1973), 305-306 Zbl0258.65120MR331867
- Thom Mulders, On Short Multiplications and Divisions, Applicable Algebra in Engineering, Communication and Computing 11 (2000), 69-88 Zbl0968.68200MR1817699
- Henri J. Nussbaumer, Fast polynomial transform algorithms for digital convolution, Institute of Electrical and Electronics Engineers. Transactions on Acoustics, Speech, and Signal Processing 28 (1980), 205-215 Zbl0524.65093MR563380
- Henri J. Nussbaumer, Fast Fourier transform and convolution algorithms, 2 (1981), Springer-Verlag, Berlin Zbl0476.65097MR606376
- M. S. Paterson, M. J. Fischer, A. R. Meyer, An improved overlap argument for on-line multiplication, Complexity of computation (1974), 97-111, AMS Zbl0301.68059MR423875
- A. Schönhage, Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2, Acta Informat. 7 (1976/77), 395-398 Zbl0362.65011MR436663
- A. Schönhage, V. Strassen, Schnelle Multiplikation großer Zahlen, Computing 7 (1971), 281-292 Zbl0223.68007MR292344
- V. Strassen, The computational complexity of continued fractions, SIAM J. Comput. 12 (1983), 1-27 Zbl0543.68026
- A. L. Toom, The complexity of a scheme of functional elements simulating the multiplication of integers, Doklady Akademii Nauk SSSR 150 (1963), 496-498 Zbl0203.15604MR156494
- Joris van der Hoeven, The truncated Fourier transform and applications, ISSAC’04 (2004), 290-296, ACM, New York Zbl1064.65158MR2126956
- Charles Van Loan, Computational frameworks for the fast Fourier transform, 10 (1992), SIAM, Philadelphia, PA Zbl0757.65154MR1153025
- André Weimerskirch, Christof Paar, Generalizations of the Karatsuba Algorithm for Efficient Implementations, Eprint (2006)
- J. Abdeljaoued, H. Lombardi, Méthodes matricielles : introduction à la complexité algébrique, 42 (2004), Springer-Verlag, Berlin Zbl1087.65041MR2046056
- W. Baur, V. Strassen, The complexity of partial derivatives, Theoretical Computer Science 22 (1983), 317-330 Zbl0498.68028MR693063
- D. Bini, Relations between exact and approximate bilinear algorithms. Applications, Calcolo 17 (1980), 87-97 Zbl0459.65028MR605920
- D. Bini, M. Capovani, F. Romani, G. Lotti, complexity for approximate matrix multiplication, Inform. Process. Lett. 8 (1979), 234-235 Zbl0395.68048MR534068
- Markus Bläser, A -lower bound for the multiplicative complexity of -matrix multiplication, STACS 2001 (Dresden) 2010 (2001), 99-109, Springer, Berlin Zbl0981.68710MR1890782
- Markus Bläser, On the complexity of the multiplication of matrices of small formats, J. Complexity 19 (2003), 43-60 Zbl1026.68062MR1951322
- A. Borodin, I. Munro, Evaluation of polynomials at many points, Information Processing Letters 1 (1971), 66-68 Zbl0226.65036
- R. P. Brent, H. T. Kung, Fast algorithms for manipulating formal power series, Journal of the ACM 25 (1978), 581-595 Zbl0388.68052
- James R. Bunch, John E. Hopcroft, Triangular factorization and inversion by fast matrix multiplication, Math. Comp. 28 (1974), 231-236 Zbl0276.15006MR331751
- P. Bürgisser, M. Karpinski, T. Lickteig, Some computational problems in linear algebra as hard as matrix multiplication, Comput. Complexity 1 (1991), 131-155 Zbl0774.68056MR1134946
- H. Cohn, R. Kleinberg, B. Szegedy, C. Umans, Group-theoretic Algorithms for Matrix Multiplication, FOCS’05 (2005), 379-388, IEEE Computer Society
- Henry Cohn, Christopher Umans, A Group-Theoretic Approach to Fast Matrix Multiplication, FOCS’03 (2003), IEEE Computer Society, Washington, DC, USA
- Don Coppersmith, Shmuel Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput. 9 (1990), 251-280 Zbl0702.65046MR1056627
- A. M Danilevskii, The numerical solution of the secular equation, Matem. sbornik 44 (1937), 169-171
- Charles M. Fiduccia, On obtaining upper bounds on the complexity of matrix multiplication, Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972) (1972), 31-40, Plenum, New York MR391577
- P. C. Fischer, R. L. Probert, Efficient procedures for using matrix algorithms, Automata, languages and programming (1974), 413-427. LNCS, Vol. 14, Springer, Berlin Zbl0284.68039MR428786
- Patrick C. Fischer, Further schemes for combining matrix algorithms, Automata, languages and programming (1974), 428-436. LNCS, Vol. 14, Springer, Berlin Zbl0284.68040MR428787
- Mark Giesbrecht, Nearly optimal algorithms for canonical matrix forms, SIAM J. Comput. 24 (1995), 948-969 Zbl0839.65043MR1350753
- Richard Harter, The optimality of Winograd’s formula, Commun. ACM 15 (1972) Zbl0232.65036MR314249
- J. Hopcroft, J. Musinski, Duality applied to the complexity of matrix multiplication and other bilinear forms, SIAM Journal on Computing 2 (1973), 159-173 Zbl0294.65022MR471439
- J. E. Hopcroft, L. R. Kerr, On minimizing the number of multiplications necessary for matrix multiplication, SIAM J. Appl. Math. 20 (1971), 30-36 Zbl0215.55501MR274293
- S. Huss-Lederman, E. M. Jacobson, A. Tsao, T. Turnbull, J. R. Johnson, Implementation of Strassen’s algorithm for matrix multiplication, Supercomputing’96 (1996), IEEE Computer Society, Washington, DC, USA
- Joseph Ja’Ja’, On the complexity of bilinear forms with commutativity, STOC’79 (1979), 197-208, ACM, New York, NY, USA MR564631
- I Kaporin, The aggregation and cancellation techniques as a practical tool for faster matrix multiplication, Theoretical Computer Science 315 (2004), 469-510 Zbl1057.65020MR2073062
- Igor Kaporin, A practical algorithm for faster matrix multiplication, Numer. Linear Algebra Appl. 6 (1999), 687-700 Zbl0982.65048MR1736386
- Walter Keller-Gehrig, Fast algorithms for the characteristic polynomial, Theoret. Comput. Sci. 36 (1985), 309-317 Zbl0565.68041
- V. V. Klyuyev, N. I. Kokovkin-Shcherbak, On the minimization of the number of arithmetic operations for the solution of linear algebraic systems of equations, USSR Computational Mathematics and Mathematical Physics 5 (1965), 25-43 Zbl0159.20403
- A. N. Krylov, On the numerical solution of the equation by which in technical questions frequencies of small oscillations of material systems are determined, Izv. Akad. Nauk SSSR 7 (1931), 491-539
- Julian Laderman, Victor Pan, Xuan He Sha, On practical algorithms for accelerated matrix multiplication, Linear Algebra Appl. 162/164 (1992), 557-588 Zbl0748.65043MR1148417
- Julian D. Laderman, A noncommutative algorithm for multiplying matrices using muliplications, Bull. Amer. Math. Soc. 82 (1976), 126-128 Zbl0322.65021MR395320
- J. M. Landsberg, The border rank of the multiplication of matrices is seven, J. Amer. Math. Soc. 19 (2006), 447-459 Zbl1088.68069MR2188132
- J. M. Landsberg, Geometry and the complexity of matrix multiplication, Bull. Amer. Math. Soc. (N.S.) 45 (2008), 247-284 Zbl1145.68054MR2383305
- O. M. Makarov, An algorithm for multiplication of matrices, Zh. Vychisl. Mat. i Mat. Fiz. 26 (1986), 293-294, 320 Zbl0614.65036MR835700
- I. Munro, Problems related to matrix multiplication, Proceedings Courant Institute Symposium on Computational Complexity, October 1971 (1973), 137-151, Algorithmics Press, New York
- V. Pan, Computation schemes for a product of matrices and for the inverse matrix, Uspehi Mat. Nauk 27 (1972), 249-250 Zbl0261.65025MR395194
- V. Ya. Pan, Strassen’s algorithm is not optimal. Trilinear technique of aggregating, uniting and canceling for constructing fast algorithms for matrix operations, SFCS ’78 (1978), 166-176, IEEE Computer Society, Washington, DC, USA MR539838
- V. Ya. Pan, New fast algorithms for matrix operations, SIAM J. Comput. 9 (1980), 321-342 Zbl0446.68034MR568817
- V. Ya. Pan, New combinations of methods for the acceleration of matrix multiplication, Comput. Math. Appl. 7 (1981), 73-125 Zbl0465.68019MR593557
- Victor Pan, How can we speed up matrix multiplication ?, SIAM Rev. 26 (1984), 393-415 Zbl0563.65028MR750457
- Victor Pan, How to multiply matrices faster, 179 (1984), Springer-Verlag, Berlin Zbl0548.65022MR765701
- M. S. Paterson, L. J. Stockmeyer, On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials, SIAM J. Comput. 2 (1973), 60-66 Zbl0262.65033MR314238
- Clément Pernet, Arne Storjohann, Faster algorithms for the characteristic polynomial, ISSAC’07 (2007), 307-314, ACM, New York Zbl1190.68032MR2402276
- Robert L. Probert, On the additive complexity of matrix multiplication, SIAM J. Comput. 5 (1976), 187-203 Zbl0328.65029MR408311
- Ran Raz, On the complexity of matrix product, SIAM J. Comput. 32 (2003), 1356-1369 Zbl1026.68060MR2001277
- A. Schönhage, Unitäre Transformationen grosser Matrizen, Numer. Math. 20 (1972/73), 409-417 Zbl0252.65031MR327019
- A. Schönhage, Partial and total matrix multiplication, SIAM J. Comput. 10 (1981), 434-455 Zbl0462.68018MR623057
- Warren D. Smith, Fast matrix multiplication formulae – report of the prospectors, (2002)
- Arne Storjohann, Deterministic computation of the Frobenius form (extended abstract), 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV, 2001) (2001), 368-377, IEEE Computer Soc., Los Alamitos, CA MR1948725
- V. Strassen, Gaussian Elimination is Not Optimal, Numerische Mathematik 13 (1969), 354-356 Zbl0185.40101
- V. Strassen, Relative bilinear complexity and matrix multiplication, J. Reine Angew. Math. 375/376 (1987), 406-443 Zbl0621.68026MR882307
- Volker Strassen, Algebraic complexity theory, Handbook of theoretical computer science, Vol. A (1990), 633-672, Elsevier, Amsterdam Zbl0900.68247MR1127177
- Ondrej Sýkora, A fast non-commutative algorithm for matrix multiplication, Mathematical foundations of computer science (Proc. Sixth Sympos., Tatranská Lomnica, 1977) (1977), 504-512. Lecture Notes in Comput. Sci., Vol. 53, Springer, Berlin Zbl0354.68068MR464684
- L. G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci. 8 (1979), 189-201 Zbl0415.68008MR526203
- Abraham Waksman, On Winograd’s algorithm for inner products, IEEE Trans. Comput. C-19 (1970), 360-361 Zbl0196.17104MR455534
- S. Winograd, A new algorithm for inner-product, IEEE Transactions on Computers 17 (1968), 693-694 Zbl0174.46703
- S. Winograd, On multiplication of matrices, Linear Algebra and Appl. 4 (1971), 381-388 Zbl0225.68018MR297115
- Shmuel Winograd, On the number of multiplications necessary to compute certain functions, Comm. Pure Appl. Math. 23 (1970), 165-179 Zbl0191.15804MR260150
- Shmuel Winograd, Some remarks on fast multiplication of polynomials, Complexity of sequential and parallel numerical algorithms (Proc. Sympos., Carnegie-Mellon Univ., Pittsburgh, Pa., 1973) (1973), 181-196, Academic Press, New York Zbl0273.65033MR375839
- D. J. Bernstein, Removing redundancy in high-precision Newton iteration
- Daniel J. Bernstein, Composing power series over a finite ring in essentially linear time, Journal of Symbolic Computation 26 (1998), 339-341 Zbl0934.68129MR1633872
- Daniel J. Bernstein, Fast multiplication and its applications, Algorithmic number theory : lattices, number fields, curves and cryptography 44 (2008), 325-384, Cambridge Univ. Press Zbl1208.68239MR2467550
- Alin Bostan, Philippe Flajolet, Bruno Salvy, Éric Schost, Fast Computation of Special Resultants, Journal of Symbolic Computation 41 (2006), 1-29 Zbl1121.13037MR2194883
- Alin Bostan, Bruno Salvy, Éric Schost, Power series composition and change of basis, ISSAC’08 (2008), 269-276, ACM, New York
- Richard P. Brent, Multiple-precision zero-finding methods and the complexity of elementary function evaluation, Analytic computational complexity (1976), 151-176, Academic Press, New York Zbl0342.65031MR423869
- Guillaume Hanrot, Paul Zimmermann, Newton iteration revisited, Available at
- David Harvey, Faster algorithms for the square root and reciprocal of power series, Mathematics of Computation Zbl1217.65052
- David Harvey, Faster exponentials of power series Zbl1217.65052
- A. H. Karp, P. Markstein, High-precision division and square root, ACM Transactions on Mathematical Software 23 (1997), 561-589 Zbl0912.65038MR1671702
- Kiran S. Kedlaya, Christopher Umans, Fast Modular Composition in any Characteristic, FOCS ’08 : Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer Science (2008), 146-155, IEEE Computer Society, Washington, DC, USA
- H. T. Kung, On computing reciprocals of power series, Numerische Mathematik 22 (1974), 341-348 Zbl0274.65009MR351045
- Joseph-Louis Lagrange, Nouvelle méthode pour résoudre les équations littérales par le moyen des séries, Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Berlin 24 (1768), 251-326
- J. D. Lipson, Newton’s Method : A Great Algebraic Algorithm, Proceedings ACM Symposium of Symbolic and Algebraic Computation (1976), 260-270, ACM Press Zbl0454.65035
- Isaac Newton, La méthode des fluxions, et les suites infinies, (1740), de Bure aîné
- P. Ritzmann, A fast numerical algorithm for the composition of power series with complex coefficients, Theoretical Computer Science 44 (1986), 1-16 Zbl0632.68039MR858688
- A. Schönhage, The fundamental theorem of algebra in terms of computational complexity, (1982)
- G. Schulz, Iterative Berechnung der reziproken Matrix, Zeitschrift für angewandte Mathematik und Physik 13 (1933), 57-59 Zbl59.0535.04
- M. Sieveking, An algorithm for division of powerseries, Computing 10 (1972), 153-156 Zbl0251.68023MR312701
- Joris van der Hoeven, Relax, but don’t be too lazy, Journal of Symbolic Computation 34 (2002), 479-542 Zbl1011.68189MR1943041
- Manindra Agrawal, Neeraj Kayal, Nitin Saxena, PRIMES is in P, Annals of Mathematics. Second Series 160 (2004), 781-793 Zbl1071.11070MR2123939
- Vincent D. Blondel, Natacha Portier, The presence of a zero in an integer linear recurrent sequence is NP-hard to decide, Linear Algebra and its Applications 351/352 (2002), 91-98 Zbl1007.93047MR1917474
- L. Cerlienco, M. Mignotte, F. Piras, Suites récurrentes linéaires. Propriétés algébriques et arithmétiques, L’Enseignement Mathématique 33 (1987), 67-108 Zbl0626.10008
- Graham Everest, Alf van der Poorten, Igor Shparlinski, Thomas Ward, Recurrence sequences, 104 (2003), American Mathematical Society, Providence, RI Zbl1033.11006MR1990179
- C. M. Fiduccia, An efficient formula for linear recurrences, SIAM Journal on Computing 14 (1985), 106-112 Zbl0561.68033MR774930
- J. C. P. Miller, D. J. Spencer Brown, An algorithm for evaluation of remote terms in a linear recurrence sequence, Computer Journal 9 (1966), 188-190 Zbl0151.21101MR195240
- R. T. Moenck, A. Borodin, Fast modular transforms via division, Thirteenth Annual IEEE Symposium on Switching and Automata Theory (1972), 90-96
- Peter L. Montgomery, Modular multiplication without trial division, Mathematics of Computation 44 (1985), 519-521 Zbl0559.10006MR777282
- V. Shoup, A Fast Deterministic Algorithm for Factoring Polynomials over Finite Fields of Small Characteristic, ISSAC’91 (1991), 14-21, ACM Press Zbl0955.11500
- V. Strassen, Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten, Numerische Mathematik 20 (1972/73), 238-251 Zbl0251.65036MR324947
- A. J. van der Poorten, Some facts that should be better known, especially about rational functions, Number theory and applications (1989), 497-528, Kluwer, Dordrecht Zbl0687.10007
- A. V. Aho, K. Steiglitz, J. D. Ullman, Evaluating polynomials at fixed sets of points, SIAM Journal on Computing 4 (1975), 533-539 Zbl0326.65027MR398151
- L. I. Bluestein, A linear filtering approach to the computation of the discrete Fourier transform, IEEE Trans. Electroacoustics AU-18 (1970), 451-455
- A. Borodin, R. T. Moenck, Fast modular transforms, Comput. Sys. Sci. 8 (1974), 366-386 Zbl0302.68064MR371144
- Alin Bostan, Grégoire Lecerf, Éric Schost, Tellegen’s principle into practice, ISSAC’03 (2003), 37-44, ACM Press Zbl1072.68649
- Alin Bostan, Éric Schost, Polynomial evaluation and interpolation on special sets of points, Journal of Complexity 21 (2005), 420-446 Zbl1101.68039MR2152715
- C. M. Fiduccia, Polynomial evaluation via the division algorithm : The fast Fourier transform revisited., 4th ACM Symposium on Theory of Computing (1972), 88-93 Zbl0346.42009
- Harvey L. Garner, The residue number system, IRE-AIEE-ACM’59 Western joint computer conference (1959), 146-153, ACM, NY, USA
- Carl Friedrich Gauss, Disquisitiones arithmeticae, (1966), Yale University Press, New Haven, Conn. Zbl0136.32301MR197380
- L. E. Heindel, E. Horowitz, On decreasing the computing time for modular arithmetic, 12th symposium on switching and automata theory (1971), 126-128, IEEE
- E. Horowitz, A fast Method for Interpolation Using Preconditioning, Information Processing Letters 1 (1972), 157-163 Zbl0297.65005MR315864
- Russell M. Mersereau, An algorithm for performing an inverse chirp -transform, IEEE Trans. Acoust. Speech Signal Processing ASSP-22 (1974), 387-388 MR413451
- P. L. Montgomery, An FFT extension of the elliptic curve method of factorization, (1992) MR2688742
- A. Ostrowski, On two problems in abstract algebra connected with Horner’s rule, Studies in mathematics and mechanics presented to Richard von Mises (1954), 40-48 Zbl0056.35204MR66030
- V. Ya. Pan, Methods of computing values of polynomials, Russian Mathematical Surveys 21 (1966), 105-136 Zbl0173.17802
- L. R. Rabiner, R. W. Schafer, C. M. Rader, The chirp -transform algorithm and its application, Bell System Tech. J. 48 (1969), 1249-1292 MR243724
- Victor Shoup, Roman Smolensky, Lower bounds for polynomial evaluation and interpolation problems, Computational Complexity 6 (1996/97), 301-311 Zbl0895.68075MR1613682
- A. Svoboda, M. Valach, Operátorové obvody (Operational circuits), Stroje na Zpracování Informací (Information Processing Machines) 3 (1955), 247-295 MR96376
- H. Takahasi, Y. Ishibashi, A new method for exact calculation by a digital computer, Information Processing in Japan (1961), 28-42 Zbl0121.12103
- E. Waring, Problems concerning interpolations, Philosophical Transactions of the Royal Society of London 59 (1779), 59-67
- L. M. Berkovich, V. G. Tsirulik, Differential resultants and some of their applications, Differentsialnye Uravneniya 22 (1986), 750-757, 914 Zbl0611.34007MR846502
- É. Bézout, Recherches sur le degré des équations résultantes de l’évanouissement des inconnues, Histoire de l’académie royale des science (1764), 288-338
- Richard P. Brent, Fred G. Gustavson, David Y. Y. Yun, Fast solution of Toeplitz systems of equations and computation of Padé approximants, J. Algorithms 1 (1980), 259-295 Zbl0475.65018
- W. S. Brown, On Euclid’s algorithm and the computation of polynomial greatest common divisors, SYMSAC ’71 : Proceedings of the second ACM symposium on Symbolic and algebraic manipulation (1971), 195-211, ACM, New York, NY, USA
- W. S. Brown, J. F. Traub, On Euclid’s algorithm and the theory of subresultants, J. Assoc. Comput. Mach. 18 (1971), 505-514 Zbl0226.65041MR303684
- Marc Chardin, Differential resultants and subresultants, Fundamentals of computation theory (Gosen, 1991) 529 (1991), 180-189, Springer, Berlin Zbl0925.12002MR1136080
- G. E. Collins, Polynomial remainder sequences and determinants, Amer. Math. Monthly 73 (1966), 708-712 Zbl0147.29505MR199216
- George E. Collins, Subresultants and reduced polynomial remainder sequences, J. Assoc. Comput. Mach. 14 (1967), 128-142 Zbl0152.35403MR215512
- George E. Collins, The calculation of multivariate polynomial resultants, J. Assoc. Comput. Mach. 18 (1971), 515-532 Zbl0226.65042MR298921
- D. Yu. Grigoriev, Complexity of factoring and calculating the GCD of linear ordinary differential operators, J. Symbolic Comput. 10 (1990), 7-37 Zbl0728.68067MR1081258
- Fred G. Gustavson, David Y. Y. Yun, Fast algorithms for rational Hermite approximation and solution of Toeplitz systems, IEEE Trans. Circuits and Systems 26 (1979), 750-755 Zbl0416.65008MR549385
- Hoon Hong, Ore principal subresultant coefficients in solutions, Appl. Algebra Engrg. Comm. Comput. 11 (2001), 227-237 Zbl1006.16030MR1815132
- Hoon Hong, Ore subresultant coefficients in solutions, Appl. Algebra Engrg. Comm. Comput. 12 (2001), 421-428 Zbl1006.16031MR1864611
- Donald E. Knuth, The analysis of algorithms, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 3 (1971), 269-274, Gauthier-Villars, Paris Zbl0279.68041MR423865
- Donald E. Knuth, The Art of Computer Programming, 2 : Seminumerical Algorithms (1997), Addison-Wesley Publishing Co., Reading, Mass. Zbl0895.68055MR378456
- Serge Lang, Algebra, 211 (2002), Springer-Verlag, New York Zbl0984.00001MR1878556
- Alain Lascoux, Symmetric functions and combinatorial operators on polynomials, 99 (2003), Published for the Conference Board of the Mathematical Sciences, Washington, DC Zbl1039.05066MR2017492
- D. H. Lehmer, Euclid’s Algorithm for Large Numbers, Amer. Math. Monthly 45 (1938), 227-233 MR1524250
- Z. Li, I. Nemes, A modular algorithm for computing greatest common right divisors of Ore polynomials, ISSAC’97 (1997), 282-289, ACM, New York Zbl0927.16043MR1809996
- Ziming Li, A subresultant theory for Ore polynomials with applications, ISSAC’98 (1998), 132-139, ACM, New York Zbl0922.16015MR1805177
- Ziming Li, Greatest common right divisors, least common left multiples, and subresultants of Ore polynomials, Mathematics mechanization and applications (2000), 297-324, Academic Press, San Diego, CA MR1784030
- R. T. Moenck, Fast computation of GCDs, Fifth Annual ACM Symposium on Theory of Computing (Austin, Tex., 1973) (1973), 142-151, Assoc. Comput. Mach., New York Zbl0306.68027MR455528
- Niels Möller, On Schönhage’s algorithm and subquadratic integer GCD computation, Math. Comp. 77 (2008), 589-607 Zbl1165.11003MR2353968
- V. Y. Pan, X. Wang, Acceleration of Euclidean algorithm and extensions, ISSAC’02 (2002), 207-213, ACM, New York Zbl1072.68691MR2035251
- A. Schönhage, Schnelle Berechnung von Kettenbruchentwicklugen, Acta Inform. 1 (1971), 139-144 Zbl0223.68008
- A. Schönhage, Probabilistic computation of integer polynomial GCDs, J. Algorithms 9 (1988), 365-371 Zbl0651.68045MR955145
- J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. Assoc. Comput. Mach. 27 (1980), 701-717 Zbl0452.68050MR594695
- D. Stehlé, P. Zimmermann, A binary recursive Gcd algorithm, ANTS-VI 3076 (2004), 411-425, Springer Zbl1125.11362MR2138011
- V. Strassen, The computational complexity of continued fractions, SYMSAC’81 (1981), 51-67, ACM, New York, NY, USA Zbl0486.68029
- James Joseph Sylvester, On rational derivation from equations of coexistence, that is to say, a new and extended theory of elimination, 1839–40, The Collected mathematical papers of James Joseph Sylvester (1839), 40-53, Baker, H. F., New York
- James Joseph Sylvester, A method of determining by mere inspection the derivatives from two equations of any degree, Philos. Mag. 16 (1840), 132-135
- Joachim von zur Gathen, Jürgen Gerhard, Modern computer algebra, (2003), Cambridge University Press, New York Zbl1055.68168MR2001757
- Joachim von zur Gathen, Thomas Lücking, Subresultants revisited, Theoret. Comput. Sci. 297 (2003), 199-239 Zbl1045.68168MR1981147
- Chee Yap, Fundamental Problems in Algorithmic Algebra, (2000), Oxford Univ. Press Zbl0999.68261MR1740761
- David Y.Y. Yun, On square-free decomposition algorithms, SYMSAC’76 (1976), 26-35, ACM, New York, NY, USA Zbl0498.13006
- David Y.Y. Yun, On the equivalence of polynomial GCD and squarefree factorization problems, Proc. of the MACSYMA Users’ Conference (1977), 65-70
- Niels Henrik Abel, Œuvres complètes. Tome II, (1992), Éditions Jacques Gabay, Sceaux
- Handbook of mathematical functions with formulas, graphs, and mathematical tables, (1992), AbramowitzMiltonM., New York MR1225604
- Alin Bostan, Algorithmique efficace pour des opérations de base en Calcul formel, (2003)
- Alin Bostan, Frédéric Chyzak, Grégoire Lecerf, Bruno Salvy, Éric Schost, Differential equations for algebraic functions, ISSAC’07 (2007), 25-32, ACM Press Zbl1190.68085MR2396180
- L. Comtet, Analyse Combinatoire, (1970), PUF, Paris Zbl0221.05002
- Philippe Flajolet, Bruno Salvy, The SIGSAM Challenges : Symbolic Asymptotics in Practice, SIGSAM Bulletin 31 (1997), 36-47
- Rev. Robert Harley, On the theory of the transcendental solution of algebraic equations, Quarterly Journal of Pure and Applied Mathematics 5 (1862), 337-360
- William A. Harris, Yasutaka Sibuya, The reciprocals of solutions of linear ordinary differential equations, Advances in Mathematics 58 (1985), 119-132 Zbl0581.12013MR814747
- L. Lipshitz, -Finite Power Series, Journal of Algebra 122 (1989), 353-373 Zbl0695.12018MR999079
- Bruno Salvy, Paul Zimmermann, Gfun : a Maple package for the manipulation of generating and holonomic functions in one variable, ACM Transactions on Mathematical Software 20 (1994), 163-177 Zbl0888.65010
- Michael F. Singer, Algebraic relations among solutions of linear differential equations, Transactions of the American Mathematical Society 295 (1986), 753-763 Zbl0593.12014MR833707
- N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, (2006) Zbl1274.11001
- R. P. Stanley, Differentiably Finite Power Series, European Journal of Combinatorics 1 (1980), 175-188 Zbl0445.05012MR587530
- Richard P. Stanley, Enumerative combinatorics, 2 (1999), Cambridge University Press Zbl0928.05001MR1676282
- Jules Tannery, Propriétés des intégrales des équations différentielles linéaires à coefficients variables, (1874)
- George A. Baker, Peter Graves-Morris, Padé approximants, 59 (1996), Cambridge University Press, Cambridge Zbl0923.41001MR1383091
- B. Beckermann, G. Labahn, A uniform approach for the fast computation of matrix-type Padé approximants, SIAM J. Matrix Anal. Appl. 15 (1994), 804-823 Zbl0805.65008MR1282696
- Bernhard Beckermann, A reliable method for computing -Padé approximants on arbitrary staircases, J. Comput. Appl. Math. 40 (1992), 19-42 Zbl0810.65014MR1167913
- Bernhard Beckermann, George Labahn, Fraction-free computation of matrix rational interpolants and matrix GCDs, SIAM J. Matrix Anal. Appl. 22 (2000), 114-144 Zbl0973.65007MR1779720
- S. Cabay, G. Labahn, A fast, reliable algorithm for calculating Padé-Hermite forms, ISSAC’89 (1989), 95-100, ACM, New York, NY, USA
- S. Cabay, G. Labahn, B. Beckermann, On the theory and computation of nonperfect Padé-Hermite approximants, J. Comput. Appl. Math. 39 (1992), 295-313 Zbl0810.65013MR1164293
- Stanley Cabay, Dong Koo Choi, Algebraic computations of scaled Padé fractions, SIAM J. Comput. 15 (1986), 243-270 Zbl0633.30008MR822203
- Unjeng Cheng, On the continued fraction and Berlekamp’s algorithm, IEEE Trans. Inform. Theory 30 (1984), 541-544 Zbl0552.94014MR751325
- J. Della Dora, C. Dicrescenzo, Approximants de Padé-Hermite. I. Théorie, Numer. Math. 43 (1984), 23-39 Zbl0537.65013MR726360
- J. Della Dora, C. Dicrescenzo, Approximants de Padé-Hermite. II. Programmation, Numer. Math. 43 (1984), 41-57 Zbl0537.65014MR726361
- Harm Derksen, An algorithm to compute generalized Padé-Hermite forms, (1994)
- John D. Dixon, Exact solution of linear equations using -adic expansions, Numer. Math. 40 (1982), 137-141 Zbl0492.65016
- Jean-Louis Dornstetter, On the equivalence between Berlekamp’s and Euclid’s algorithms, IEEE Trans. Inform. Theory 33 (1987), 428-431 Zbl0633.94019MR885401
- Pascal Giorgi, Claude-Pierre Jeannerod, Gilles Villard, On the complexity of polynomial matrix computations, ISSAC’03 (2003), 135-142, ACM, New York Zbl1072.68708
- William B. Gragg, Fred G. Gustavson, Daniel D. Warner, David Y. Y. Yun, On fast computation of superdiagonal Padé fractions, Math. Programming Stud. (1982), 39-42 Zbl0501.65006MR656936
- G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, (2008), Oxford University Press, Oxford Zbl1159.11001MR2445243
- C. Hermite, Extrait d’une lettre de Monsieur Ch. Hermite à Monsieur Paul Gordan, J. Reine Angew. Math. 78 (1873), 303-311
- C. Hermite, Sur la fonction exponentielle, C. R. Math. Acad. Sci. Paris 77 (1873), 18-24
- C. Hermite, Sur la généralisation des fractions continues algébriques, Ann. Math. 21 (1893), 289-308 Zbl25.0325.02
- M. A. H. Khan, High-order differential approximants, J. Comput. Appl. Math. 149 (2002), 457-468 Zbl1013.65003MR1937295
- K. Mahler, Perfect systems, Compositio Math. 19 (1968), 95-166 (1968) Zbl0168.31303MR239099
- James L. Massey, Shift-register synthesis and decoding, IEEE Trans. Information Theory IT-15 (1969), 122-127 Zbl0167.18101MR242556
- Robert J. McEliece, James B. Shearer, A property of Euclid’s algorithm and an application to Padé approximation, SIAM J. Appl. Math. 34 (1978), 611-615 Zbl0384.10006MR491634
- W. H. Mills, Continued fractions and linear recurrences, Math. Comp. 29 (1975), 173-180 Zbl0298.10021MR369276
- H. Padé, Sur la Représentation Approchée d’une Fonction par des Fractions Rationelles, Ann. Sci. École Norm. Sup. 9 (1892), 3-93
- H. Padé, Sur la généralisation des fractions continues algébriques, J. Math. Pures Appl. 10 (1894), 291-330
- Victor Y. Pan, Xinmao Wang, On rational number reconstruction and approximation, SIAM J. Comput. 33 (2004), 502-503 Zbl1101.68997MR2048454
- Stefan Paszkowski, Recurrence relations in Padé-Hermite approximation, J. Comput. Appl. Math. 19 (1987), 99-107 Zbl0624.41021MR901218
- A. V. Sergeyev, A recursive algorithm for Padé-Hermite approximations, USSR Comput. Maths Math. Phys 26 (1986), 17-22 Zbl0621.65005
- R. E. Shafer, On quadratic approximation, SIAM J. Numer. Anal. 11 (1974), 447-460 Zbl0253.65006MR358161
- Y. Tourigny, Ph. G. Drazin, The asymptotic behaviour of algebraic approximants, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456 (2000), 1117-1137 Zbl0971.41007MR1809955
- M. Van Barel, A. Bultheel, A general module-theoretic framework for vector M-Padé and matrix rational interpolation, Numer. Algorithms 3 (1992), 451-461 Zbl0780.41014MR1199391
- Marc Van Barel, Adhemar Bultheel, The computation of nonperfect Padé-Hermite approximants, Numer. Algorithms 1 (1991), 285-304 Zbl0753.65013MR1135298
- Xinmao Wang, Victor Y. Pan, Acceleration of Euclidean algorithm and rational number reconstruction, SIAM J. Comput. 32 (2003), 548-556 Zbl1031.68149MR1969404
- L. R. Welch, R. A. Scholtz, Continued fractions and Berlekamp’s algorithm, IEEE Trans. Inform. Theory 25 (1979), 19-27 Zbl0388.94014MR514928
- N. Zierler, Linear recurring sequences and error-correcting codes, Error Correcting Codes (Proc. Sympos. Math. Res. Center, Madison, Wis., 1968) (1968), 47-59, Wiley Zbl0181.22402MR249191
- Don Coppersmith, Solving homogeneous linear equations over via block Wiedemann algorithm, Math. Comp. 62 (1994), 333-350 Zbl0805.65046MR1192970
- Richard A. DeMillo, Richard J. Lipton, A probabilistic remark on algebraic program testing, Inform. Process. Lett. 7 (1978), 193-195 Zbl0397.68011
- M. Giesbrecht, A. Lobo, B. D. Saunders, Certifying inconsistency of sparse linear systems, Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation (Rostock) (1998), 113-119 (electronic), ACM, New York Zbl0919.65017MR1805174
- Mark Giesbrecht, Fast computation of the Smith form of a sparse integer matrix, Comput. Complexity 10 (2001), 41-69 Zbl0992.65039MR1867308
- Erich Kaltofen, B. David Saunders, On Wiedemann’s method of solving sparse linear systems, Applied algebra, algebraic algorithms and error-correcting codes (New Orleans, LA, 1991) 539 (1991), 29-38, Springer, Berlin Zbl0778.65034MR1229306
- Thom Mulders, Certified sparse linear system solving, J. Symbolic Comput. 38 (2004), 1343-1373 Zbl1137.65345MR2168719
- E. Thomé, Subquadratic computation of vector generating polynomials and improvement of the block Wiedemann algorithm, J. Symbolic Comput. 33 (2002), 757-775 Zbl1010.65024MR1919913
- William J. Turner, A block Wiedemann rank algorithm, ISSAC’06 (2006), 332-339, ACM, New York MR2289139
- G. Villard, Further analysis of Coppersmith’s block Wiedemann algorithm for the solution of sparse linear systems (extended abstract), ISSAC’97 (1997), 32-39, ACM, New York, NY, USA Zbl0917.65041
- D. Wiedemann, Solving sparse linear equations over finite fields, IEEE Transactions on Information Theory IT-32 (1986), 54-62 Zbl0607.65015
- Richard Zippel, Probabilistic algorithms for sparse polynomials, EUROSAM’79 72 (1979), 216-226, Springer, Berlin Zbl0418.68040MR575692
- Robert R. Bitmead, Brian D. O. Anderson, Asymptotically fast solution of Toeplitz and related systems of linear equations, Linear Algebra Appl. 34 (1980), 103-116 Zbl0458.65018MR591427
- Alin Bostan, Claude-Pierre Jeannerod, Éric Schost, Solving structured linear systems with large displacement rank, Theoret. Comput. Sci. 407 (2008), 155-181 Zbl1169.65023MR2463004
- Jean-Paul Cardinal, On a property of Cauchy-like matrices, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 1089-1093 Zbl0933.65025MR1696212
- I. Gohberg, V. Olshevsky, Complexity of multiplication with vectors for structured matrices, Linear Algebra Appl. 202 (1994), 163-192 Zbl0803.65053MR1288487
- I. C. Gohberg, A. A. Semencul, On the inversion of finite Toeplitz matrices and their continuous analogues (In Russian), Mat. Issled. 7 (1972), 201-223 Zbl0288.15004MR353038
- Gene H. Golub, Charles F. Van Loan, Matrix computations, (1996), Johns Hopkins University Press, Baltimore, MD Zbl0865.65009MR1417720
- T. Kailath, S. Y. Kung, M. Morf, Displacement ranks of a matrix, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 769-773 Zbl0417.65015MR537629
- Thomas Kailath, Sun Yuan Kung, Martin Morf, Displacement ranks of matrices and linear equations, J. Math. Anal. Appl. 68 (1979), 395-407 Zbl0433.15001MR533501
- Erich Kaltofen, Asymptotically fast solution of Toeplitz-like singular linear systems, ISSAC’94 (1994), 297-304, ACM, New York, NY, USA Zbl0978.15500
- Erich Kaltofen, Analysis of Coppersmith’s block Wiedemann algorithm for the parallel solution of sparse linear systems, Math. Comp. 64 (1995), 777-806 Zbl0828.65035MR1270621
- Norman Levinson, The Wiener RMS (root mean square) error criterion in filter design and prediction, J. Math. Phys. Mass. Inst. Tech. 25 (1947), 261-278 MR19257
- M. Morf, Doubling algorithms for Toeplitz and related equations, IEEE Conference on Acoustics, Speech, and Signal Processing (1980), 954-959
- Victor Pan, On computations with dense structured matrices, Math. Comp. 55 (1990), 179-190 Zbl0703.47022MR1023051
- Victor Y. Pan, Structured matrices and polynomials, (2001), Birkhäuser Boston Inc., Boston, MA Zbl0996.65028MR1843842
- Victor Y. Pan, Ailong Zheng, Superfast algorithms for Cauchy-like matrix computations and extensions, Linear Algebra Appl. 310 (2000), 83-108 Zbl0971.65024MR1753169
- William F. Trench, An algorithm for the inversion of finite Toeplitz matrices, J. Soc. Indust. Appl. Math. 12 (1964), 515-522 Zbl0131.36002MR173681
- A. Antoniou, Digital Filters : Analysis and Design, (1979), McGraw-Hill Book Co.
- M. Ben-Or, P. Tiwari, A deterministic algorithm for sparse multivariate polynomial interpolation, STOC’88 (1988), 301-309, ACM Press
- D. J. Bernstein, The transposition principle
- Leo I. Bluestein, A linear filtering approach to the computation of the discrete Fourier transform, IEEE Northeast Electronics Research and Engineering Meeting 10 (1968), 218-219
- J. L. Bordewijk, Inter-reciprocity applied to electrical networks, Appl. Sci. Res. B. 6 (1956), 1-74 Zbl0072.43203MR79954
- A. Bostan, G. Lecerf, B. Salvy, É. Schost, B. Wiebelt, Complexity issues in bivariate polynomial factorization, ISSAC’04 (2004), 42-49, ACM, New York Zbl1134.68595MR2126923
- A. Bostan, É. Schost, On the complexities of multipoint evaluation and interpolation, Theoret. Comput. Sci. 329 (2004), 223-235 Zbl1086.68150MR2103649
- J. Canny, E. Kaltofen, L. Yagati, Solving systems of non-linear polynomial equations faster, ISSAC’89 (1989), 121-128, ACM Press
- Eleanor Chu, Alan George, Inside the FFT black box, (2000), CRC Press Zbl0935.65149MR1740143
- A. Fettweis, A general theorem for signal-flow networks, with applications, Archiv für Elektronik und Übertragungstechnik 25 (1971), 557-561
- C. M. Fiduccia, On obtaining upper bounds on the complexity of matrix multiplication, Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972) (1972), 31-40, Plenum, New York MR391577
- C. M. Fiduccia, On the algebraic complexity of matrix multiplication, (1973)
- J.-C. Gilbert, G. Le Vey, J. Masse, La différentiation automatique de fonctions représentées par des programmes, (1991)
- R. E. Kalman, On the General Theory of Control Systems, IRE Transactions on Automatic Control 4 (1959), 481-491
- E. Kaltofen, R. M. Corless, D. J. Jeffrey, Challenges of symbolic computation : my favorite open problems, Journal of Symbolic Computation 29 (2000), 891-919 Zbl0963.68234MR1765929
- Erich Kaltofen, Analysis of Coppersmith’s block Wiedemann algorithm for the parallel solution of sparse linear systems, Applied algebra, algebraic algorithms and error-correcting codes 673 (1993), 195-212, Springer, Berlin Zbl0801.65024MR1251979
- Erich Kaltofen, Computational differentiation and algebraic complexity theory, Workshop Report on First Theory Institute on Computational Differentiation (1993), 28-30
- M. Kaminski, D. G. Kirkpatrick, N. H. Bshouty, Addition requirements for matrix and transposed matrix products, Journal of Algorithms 9 (1988), 354-364 Zbl0653.65032MR955144
- Donald E. Knuth, Christos H. Papadimitriou, Duality in addition chains, Bulletin of the European Association for Theoretical Computer Science 13 (1981), 2-4
- G. Lecerf, É. Schost, Fast Multivariate Power Series Multiplication in Characteristic Zero, SADIO Electronic Journal on Informatics and Operations Research 5 (2003), 1-10 Zbl1209.68618
- P. Penfield, R. Spence, S. Duinker, Tellegen’s theorem and electrical networks, (1970), The M.I.T. Press, Cambridge, Mass.-London MR282747
- Steven Roman, The umbral calculus, 111 (1984), Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York Zbl0536.33001MR741185
- V. Shoup, A new polynomial factorization algorithm and its implementation, Journal of Symbolic Computation 20 (1995), 363-397 Zbl0854.11074MR1384454
- V. Shoup, Efficient computation of minimal polynomials in algebraic extensions of finite fields, ISSAC’99 (1999), 53-58, ACM Press, New York MR1802067
- Victor Shoup, Fast construction of irreducible polynomials over finite fields, J. Symbolic Comput. 17 (1994), 371-391 Zbl0815.11059MR1289997
- B. Tellegen, A general network theorem, with applications, Philips Research Reports 7 (1952), 259-269 Zbl0049.42301MR51142
- R. Zippel, Interpolating polynomials from their values, Journal of Symbolic Computation 9 (1990), 375-403 Zbl0702.65011MR1056633
- Michael Beeler, R. Gosper, Richard Schroeppel, HAKMEM, (1972), MIT
- Peter B. Borwein, On the complexity of calculating factorials, Journal of Algorithms 6 (1985), 376-380 Zbl0576.68027MR800727
- A. Bostan, F. Chyzak, T. Cluzeau, B. Salvy, Low complexity algorithms for linear recurrences, ISSAC’06 (2006), 31-38, ACM, New York MR2289098
- Alin Bostan, Thomas Cluzeau, Bruno Salvy, Fast Algorithms for Polynomial Solutions of Linear Differential Equations, ISSAC’05 (2005), 45-52, ACM Press, NY Zbl06459429MR2280528
- Alin Bostan, Pierrick Gaudry, Éric Schost, Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator, SIAM J. Comput. 36 (2007), 1777-1806 Zbl1210.11126MR2299425
- R. P. Brent, Multiple-precision zero-finding methods and the complexity of elementary function evaluation, Analytic computational complexity (Proc. Sympos., Carnegie-Mellon Univ., Pittsburgh, Pa., 1975) (1976), 151-176, Academic Press, New York Zbl0342.65031MR423869
- D. V. Chudnovsky, G. V. Chudnovsky, Approximations and complex multiplication according to Ramanujan, Ramanujan revisited (1988), 375-472, Academic Press, MA Zbl0647.10002MR938975
- P. Kogge, H. Stone, A parallel algorithm for the efficient solution of a general class of recurrence equations, IEEE Trans. Comp. C-22 (1973), 786-793 Zbl0262.68015MR395307
- V. Strassen, Einige Resultate über Berechnungskomplexität, Jber. Deutsch. Math.-Verein. 78 (1976/77), 1-8 Zbl0361.68070MR438807
- Claude-Pierre Jeannerod, Gilles Villard, Essentially optimal computation of the inverse of generic polynomial matrices, J. Complexity 21 (2005), 72-86 Zbl1101.68956MR2112743
- Robert T. Moenck, John H. Carter, Approximate algorithms to derive exact solutions to systems of linear equations, EUROSAM ’79 : Proceedings of the International Symposiumon on Symbolic and Algebraic Computation 72 (1979), 65-73, Springer-Verlag, London, UK Zbl0435.65023MR575681
- Arne Storjohann, High-Order Lifting, ISSAC’02 (2002), 246-254, ACM Press Zbl1072.68698
- Arne Storjohann, High-order lifting and integrality certification, J. Symbolic Comput. 36 (2003), 613-648 Zbl1059.15020MR2004044
- Arne Storjohann, The shifted number system for fast linear algebra on integer matrices, J. Complexity 21 (2005), 609-650 Zbl1101.68045MR2152725
- Arne Storjohann, Gilles Villard, Computing the rank and a small nullspace basis of a polynomial matrix, ISSAC’05 (2005), 309-316, ACM, New York Zbl06459463MR2280562
- A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, É. Schost, A. Sedoglavic, Fast computation of power series solutions of systems of differential equations, SODA’07 (2007), 1012-1021, SIAM Zbl1302.65180MR2485252
- Joris van der Hoeven, Newton’s method and FFT trading, Journal of Symbolic Computation Zbl1192.13017
- H. Alt, Square rooting is as difficult as multiplication, Computing 21 (1978/79), 221-232 Zbl0392.68037MR620210
- Jonathan M. Borwein, Bruno Salvy, A proof of a recurrence for Bessel moments, Experiment. Math. 17 (2008), 223-230 Zbl1172.33309MR2433887
- A. Bostan, F. Chyzak, Z. Li, B. Salvy, Common multiples of linear ordinary differential and difference operators Zbl1308.68161
- Alin Bostan, Frédéric Chyzak, Nicolas Le Roux, Products of ordinary differential operators by evaluation and interpolation, ISSAC’08 (2008), 23-30, ACM, New York Zbl1297.65050MR2500369
- R. P. Brent, J. F. Traub, On the complexity of composition and generalized composition of power series, SIAM Journal on Computing 9 (1980), 54-66 Zbl0447.68033MR557825
- H. T. Kung, D. M. Tong, Fast algorithms for partial fraction decomposition, SIAM J. Comput. 6 (1977), 582-593 Zbl0357.68036MR495188
- Joris van der Hoeven, FFT-like multiplication of linear differential operators, J. Symbolic Comput. 33 (2002), 123-127 Zbl1006.16029MR1876315
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.