Electromagnetic Schrödinger flow: multiplier methods for dispersion

Luca Fanelli[1]

  • [1] Luca Fanelli: Universidad del Pais Vasco, Departamento de Matema ´ticas, Apartado 644, 48080, Bilbao, Spain

Journées Équations aux dérivées partielles (2010)

  • page 1-13
  • ISSN: 0752-0360

Abstract

top
We show a list of results which have been recently obtained about dispersive properties of the electromagnetic Schrödinger flow. We introduce a general philosophy, based on multiplier technique, which permits to detect the bad parts of an electromagnetic potential which can possibly affect the dispersion.

How to cite

top

Fanelli, Luca. "Electromagnetic Schrödinger flow: multiplier methods for dispersion." Journées Équations aux dérivées partielles (2010): 1-13. <http://eudml.org/doc/116388>.

@article{Fanelli2010,
abstract = {We show a list of results which have been recently obtained about dispersive properties of the electromagnetic Schrödinger flow. We introduce a general philosophy, based on multiplier technique, which permits to detect the bad parts of an electromagnetic potential which can possibly affect the dispersion.},
affiliation = {Luca Fanelli: Universidad del Pais Vasco, Departamento de Matema ´ticas, Apartado 644, 48080, Bilbao, Spain},
author = {Fanelli, Luca},
journal = {Journées Équations aux dérivées partielles},
keywords = {electric potentials; magnetic potentials; virial identities; Schrödinger operators; spectral theory},
language = {eng},
month = {6},
pages = {1-13},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Electromagnetic Schrödinger flow: multiplier methods for dispersion},
url = {http://eudml.org/doc/116388},
year = {2010},
}

TY - JOUR
AU - Fanelli, Luca
TI - Electromagnetic Schrödinger flow: multiplier methods for dispersion
JO - Journées Équations aux dérivées partielles
DA - 2010/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 13
AB - We show a list of results which have been recently obtained about dispersive properties of the electromagnetic Schrödinger flow. We introduce a general philosophy, based on multiplier technique, which permits to detect the bad parts of an electromagnetic potential which can possibly affect the dispersion.
LA - eng
KW - electric potentials; magnetic potentials; virial identities; Schrödinger operators; spectral theory
UR - http://eudml.org/doc/116388
ER -

References

top
  1. Barceló, J.A., Ruiz, A., and Vega, L., Some dispersive estimates for Schrödinger equations with repulsive potentials J. Funct. Anal.236 (2006), 1–24. Zbl1293.35090MR2227127
  2. Burq, N., Planchon, F., Stalker, J., and Tahvildar-Zadeh, S. Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J.53(6) (2004), 1665–1680. Zbl1084.35014MR2106340
  3. Constantin, P., and Saut, J.-C., Local smoothing properties of dispersive equations, Journ. AMS (1988), 413–439. Zbl0667.35061MR928265
  4. Cycon, H.L., Froese, R., Kirsch, W., and Simon, B., Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry Texts and Monographs in Physics, Springer Verlag Berlin Heidelberg New York (1987). Zbl0619.47005MR883643
  5. Erdoğan, M. B., Goldberg, M., and Schlag, W., Strichartz and Smoothing Estimates for Schrödinger Operators with Almost Critical Magnetic Potentials in Three and Higher Dimensions, to appear on Forum Math. Zbl1181.35208MR2541480
  6. Erdoğan, M. B., Goldberg, M., and Schlag, W., Strichartz and smoothing estimates for Schrodinger operators with large magnetic potentials in 3 , to appear on J. European Math. Soc. Zbl1152.35021MR2390334
  7. D’Ancona, P., and Fanelli, L., Strichartz and smoothing estimates for dispersive equations with magnetic potentials, Comm. Part. Diff. Eqns.33 (2008), 1082–1112. Zbl1160.35363MR2424390
  8. P. D’Ancona, and L. Fanelli: Smoothing estimates for the Schrödinger equation with unbounded potentials, Journ. Diff. Eq.246 (2009), 4552–4567. Zbl1173.35031MR2523293
  9. P. D’Ancona, L. Fanelli, L. Vega, and N. Visciglia: Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal.258 (2010), 3227–3240. Zbl1188.81061MR2601614
  10. Fanelli, L., Non-trapping magnetic fields and Morrey-Campanato estimates for Schrödinger operators, textitJ. Math. Anal. Appl. 357 (2009), 1–14. Zbl1170.35374MR2526801
  11. L. Fanelli, and A. García: Counterexamples to Strichartz estimates for the magnetic Schrödinger equation, to appear on Comm. Cont. Math. Zbl1227.35102
  12. Fanelli, L., and Vega, L., Magnetic virial identities, weak dispersion and Strichartz inequalities, to appear on Math. Ann. Zbl1163.35005MR2664570
  13. Georgiev, V., Stefanov, A., and Tarulli, M. Smoothing - Strichartz estimates for the Schrödinger equation with small magnetic potential, Discrete Contin. Dyn. Syst. A 17 (2007), 771–786. Zbl1125.35077MR2276474
  14. Ginibre, J., and Velo, G., Generalized Strichartz inequalities for the wave equation, J. Funct. Anal.133 (1995) no. 1, 50–68. Zbl0849.35064MR1351643
  15. Goldberg, M., Dispersive estimates for the three-dimensional schrödinger equation with rough potential, Amer. J. Math.128 (2006), 731–750. Zbl1096.35027MR2230923
  16. Goldberg, M., and Schlag, W., Dispersive estimates for schrödinger operators in dimensions one and three, Comm. Math. Phys.251 (2004), 157–178. Zbl1086.81077MR2096737
  17. Goldberg, M., Vega, L., and Visciglia, N., Counterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials, Int. Math Res Not., 2006 Vol. 2006: article ID 13927. Zbl1102.35026MR2211154
  18. Ionescu, A.D., and Kenig, C., Well-posedness and local smoothing of solutions of Schrödinger equations, Math. Res. Letters12 (2005), 193–205. Zbl1077.35108MR2150876
  19. Kato, T., and Yajima, K., Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys.1 (1989), 481–496. Zbl0833.47005MR1061120
  20. Keel, M., and Tao, T., Endpoint Strichartz estimates, Amer. J. Math.120 (1998) no. 5, 955–980. Zbl0922.35028MR1646048
  21. Leinfelder, H., and Simader, C., Schrödinger operators with singular magnetic vector potentials, Math Z.176 (1981), 1–19. Zbl0468.35038MR606167
  22. C.S. Morawetz, Time decay for the nonlinear Klein-Gordon equation, Proc. Roy. Soc. London A, 306 (1968), 291–296. Zbl0157.41502MR234136
  23. B. Perthame, and L. Vega, Morrey-Campanato estimates for the Helmholtz Equations, J. Func. Anal.164 (1999), 340–355. Zbl0932.35048MR1695559
  24. Robbiano, L., and Zuily, C., Strichartz estimates for Schrödinger equations with variable coefficients, Mem. Soc. Math. Fr. 101-102 (2005). Zbl1097.35002MR2193021
  25. Rodnianski, I., and Schlag, W., Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math.155(3) (2004), 451–513. Zbl1063.35035MR2038194
  26. Ruiz, A., and Vega, L., On local regularity of Schr¨odinger equations. Int. Math. Research Notices 1, 1993, 13–27 . Zbl0812.35016MR1201747
  27. Sjölin, P., Regularity of solutions to the Schrödinger equations, Duke Math. J.55 (1987), 699–715. Zbl0631.42010MR904948
  28. Stein, E., Harmonic Analysis. Princeton University Press, Princeton, New Jersey, 1993. Zbl0821.42001MR1232192
  29. Strichartz, R., Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J.44 (1977), 705–774. Zbl0372.35001MR512086
  30. Vega, L., The Schrödinger equation: pointwise convergence to the initial date, Proc. AMS102 (1988), 874–878. Zbl0654.42014MR934859

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.