Electromagnetic Schrödinger flow: multiplier methods for dispersion
Luca Fanelli[1]
- [1] Luca Fanelli: Universidad del Pais Vasco, Departamento de Matema ´ticas, Apartado 644, 48080, Bilbao, Spain
Journées Équations aux dérivées partielles (2010)
- page 1-13
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topFanelli, Luca. "Electromagnetic Schrödinger flow: multiplier methods for dispersion." Journées Équations aux dérivées partielles (2010): 1-13. <http://eudml.org/doc/116388>.
@article{Fanelli2010,
abstract = {We show a list of results which have been recently obtained about dispersive properties of the electromagnetic Schrödinger flow. We introduce a general philosophy, based on multiplier technique, which permits to detect the bad parts of an electromagnetic potential which can possibly affect the dispersion.},
affiliation = {Luca Fanelli: Universidad del Pais Vasco, Departamento de Matema ´ticas, Apartado 644, 48080, Bilbao, Spain},
author = {Fanelli, Luca},
journal = {Journées Équations aux dérivées partielles},
keywords = {electric potentials; magnetic potentials; virial identities; Schrödinger operators; spectral theory},
language = {eng},
month = {6},
pages = {1-13},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Electromagnetic Schrödinger flow: multiplier methods for dispersion},
url = {http://eudml.org/doc/116388},
year = {2010},
}
TY - JOUR
AU - Fanelli, Luca
TI - Electromagnetic Schrödinger flow: multiplier methods for dispersion
JO - Journées Équations aux dérivées partielles
DA - 2010/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 13
AB - We show a list of results which have been recently obtained about dispersive properties of the electromagnetic Schrödinger flow. We introduce a general philosophy, based on multiplier technique, which permits to detect the bad parts of an electromagnetic potential which can possibly affect the dispersion.
LA - eng
KW - electric potentials; magnetic potentials; virial identities; Schrödinger operators; spectral theory
UR - http://eudml.org/doc/116388
ER -
References
top- Barceló, J.A., Ruiz, A., and Vega, L., Some dispersive estimates for Schrödinger equations with repulsive potentials J. Funct. Anal.236 (2006), 1–24. Zbl1293.35090MR2227127
- Burq, N., Planchon, F., Stalker, J., and Tahvildar-Zadeh, S. Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J.53(6) (2004), 1665–1680. Zbl1084.35014MR2106340
- Constantin, P., and Saut, J.-C., Local smoothing properties of dispersive equations, Journ. AMS (1988), 413–439. Zbl0667.35061MR928265
- Cycon, H.L., Froese, R., Kirsch, W., and Simon, B., Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry Texts and Monographs in Physics, Springer Verlag Berlin Heidelberg New York (1987). Zbl0619.47005MR883643
- Erdoğan, M. B., Goldberg, M., and Schlag, W., Strichartz and Smoothing Estimates for Schrödinger Operators with Almost Critical Magnetic Potentials in Three and Higher Dimensions, to appear on Forum Math. Zbl1181.35208MR2541480
- Erdoğan, M. B., Goldberg, M., and Schlag, W., Strichartz and smoothing estimates for Schrodinger operators with large magnetic potentials in , to appear on J. European Math. Soc. Zbl1152.35021MR2390334
- D’Ancona, P., and Fanelli, L., Strichartz and smoothing estimates for dispersive equations with magnetic potentials, Comm. Part. Diff. Eqns.33 (2008), 1082–1112. Zbl1160.35363MR2424390
- P. D’Ancona, and L. Fanelli: Smoothing estimates for the Schrödinger equation with unbounded potentials, Journ. Diff. Eq.246 (2009), 4552–4567. Zbl1173.35031MR2523293
- P. D’Ancona, L. Fanelli, L. Vega, and N. Visciglia: Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal.258 (2010), 3227–3240. Zbl1188.81061MR2601614
- Fanelli, L., Non-trapping magnetic fields and Morrey-Campanato estimates for Schrödinger operators, textitJ. Math. Anal. Appl. 357 (2009), 1–14. Zbl1170.35374MR2526801
- L. Fanelli, and A. García: Counterexamples to Strichartz estimates for the magnetic Schrödinger equation, to appear on Comm. Cont. Math. Zbl1227.35102
- Fanelli, L., and Vega, L., Magnetic virial identities, weak dispersion and Strichartz inequalities, to appear on Math. Ann. Zbl1163.35005MR2664570
- Georgiev, V., Stefanov, A., and Tarulli, M. Smoothing - Strichartz estimates for the Schrödinger equation with small magnetic potential, Discrete Contin. Dyn. Syst. A 17 (2007), 771–786. Zbl1125.35077MR2276474
- Ginibre, J., and Velo, G., Generalized Strichartz inequalities for the wave equation, J. Funct. Anal.133 (1995) no. 1, 50–68. Zbl0849.35064MR1351643
- Goldberg, M., Dispersive estimates for the three-dimensional schrödinger equation with rough potential, Amer. J. Math.128 (2006), 731–750. Zbl1096.35027MR2230923
- Goldberg, M., and Schlag, W., Dispersive estimates for schrödinger operators in dimensions one and three, Comm. Math. Phys.251 (2004), 157–178. Zbl1086.81077MR2096737
- Goldberg, M., Vega, L., and Visciglia, N., Counterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials, Int. Math Res Not., 2006 Vol. 2006: article ID 13927. Zbl1102.35026MR2211154
- Ionescu, A.D., and Kenig, C., Well-posedness and local smoothing of solutions of Schrödinger equations, Math. Res. Letters12 (2005), 193–205. Zbl1077.35108MR2150876
- Kato, T., and Yajima, K., Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys.1 (1989), 481–496. Zbl0833.47005MR1061120
- Keel, M., and Tao, T., Endpoint Strichartz estimates, Amer. J. Math.120 (1998) no. 5, 955–980. Zbl0922.35028MR1646048
- Leinfelder, H., and Simader, C., Schrödinger operators with singular magnetic vector potentials, Math Z.176 (1981), 1–19. Zbl0468.35038MR606167
- C.S. Morawetz, Time decay for the nonlinear Klein-Gordon equation, Proc. Roy. Soc. London A, 306 (1968), 291–296. Zbl0157.41502MR234136
- B. Perthame, and L. Vega, Morrey-Campanato estimates for the Helmholtz Equations, J. Func. Anal.164 (1999), 340–355. Zbl0932.35048MR1695559
- Robbiano, L., and Zuily, C., Strichartz estimates for Schrödinger equations with variable coefficients, Mem. Soc. Math. Fr. 101-102 (2005). Zbl1097.35002MR2193021
- Rodnianski, I., and Schlag, W., Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math.155(3) (2004), 451–513. Zbl1063.35035MR2038194
- Ruiz, A., and Vega, L., On local regularity of Schr¨odinger equations. Int. Math. Research Notices 1, 1993, 13–27 . Zbl0812.35016MR1201747
- Sjölin, P., Regularity of solutions to the Schrödinger equations, Duke Math. J.55 (1987), 699–715. Zbl0631.42010MR904948
- Stein, E., Harmonic Analysis. Princeton University Press, Princeton, New Jersey, 1993. Zbl0821.42001MR1232192
- Strichartz, R., Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J.44 (1977), 705–774. Zbl0372.35001MR512086
- Vega, L., The Schrödinger equation: pointwise convergence to the initial date, Proc. AMS102 (1988), 874–878. Zbl0654.42014MR934859
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.