Hypoelliptic estimates for some linear diffusive kinetic equations
- [1] Laboratoire de Mathématiques Jean Leray 2, rue de la Houssinière - BP 92208 F-44322 Nantes Cedex 3
Journées Équations aux dérivées partielles (2010)
- page 1-13
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topHérau, Frédéric. "Hypoelliptic estimates for some linear diffusive kinetic equations." Journées Équations aux dérivées partielles (2010): 1-13. <http://eudml.org/doc/116390>.
@article{Hérau2010,
abstract = {This note is an announcement of a forthcoming paper [13] in collaboration with K. Pravda-Starov on global hypoelliptic estimates for Fokker-Planck and linear Landau-type operators. Linear Landau-type equations are a class of inhomogeneous kinetic equations with anisotropic diffusion whose study is motivated by the linearization of the Landau equation near the Maxwellian distribution. By introducing a microlocal method by multiplier which can be adapted to various hypoelliptic kinetic equations, we establish optimal global hypoelliptic estimates with loss of $4/3$ derivatives in a Sobolev scale exactly related to the anisotropy of the diffusion.},
affiliation = {Laboratoire de Mathématiques Jean Leray 2, rue de la Houssinière - BP 92208 F-44322 Nantes Cedex 3},
author = {Hérau, Frédéric},
journal = {Journées Équations aux dérivées partielles},
keywords = {Kinetic equations; Regularity; global hypoelliptic estimates; hypoellipticity; anisotropic diffusion; Wick quantization; Landau; Fokker-Planck},
language = {eng},
month = {6},
pages = {1-13},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Hypoelliptic estimates for some linear diffusive kinetic equations},
url = {http://eudml.org/doc/116390},
year = {2010},
}
TY - JOUR
AU - Hérau, Frédéric
TI - Hypoelliptic estimates for some linear diffusive kinetic equations
JO - Journées Équations aux dérivées partielles
DA - 2010/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 13
AB - This note is an announcement of a forthcoming paper [13] in collaboration with K. Pravda-Starov on global hypoelliptic estimates for Fokker-Planck and linear Landau-type operators. Linear Landau-type equations are a class of inhomogeneous kinetic equations with anisotropic diffusion whose study is motivated by the linearization of the Landau equation near the Maxwellian distribution. By introducing a microlocal method by multiplier which can be adapted to various hypoelliptic kinetic equations, we establish optimal global hypoelliptic estimates with loss of $4/3$ derivatives in a Sobolev scale exactly related to the anisotropy of the diffusion.
LA - eng
KW - Kinetic equations; Regularity; global hypoelliptic estimates; hypoellipticity; anisotropic diffusion; Wick quantization; Landau; Fokker-Planck
UR - http://eudml.org/doc/116390
ER -
References
top- R. Alexandre, Y. Morimoto, S. Ukai, C-J. Xu, T. Yang, Uncertainty principle and kinetic equations, J. Funct. Anal. 255, no. 8, 2013-2066 (2008). Zbl1166.35038MR2462585
- R. Alexandre, Y. Morimoto, S. Ukai, C-J. Xu, T. Yang, The Boltzmann equation without angular cutoff. Global existence and full regularity of the Boltzmann equation without angular cutoff. Part I : Maxwellian case and small singularity, preprint (2009), http://arxiv.org/abs/0912.1426 Zbl1230.35082
- P. Bolley, J. Camus, J. Nourrigat, La condition de Hörmander-Kohn pour les opérateurs pseudo-différentiels, Comm. Partial Differential Equations, 7, no. 2, 197-221 (1982). Zbl0497.35086MR646136
- F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pures Appl. (9) 81, no. 11, 1135-1159 (2002). Zbl1045.35093MR1949176
- H. Chen, W-X. Li, C-J. Xu, Propagation of Gevrey regularity for solutions of Landau equations, Kinet. Relat. Models, 1, no.3, 355-368 (2008). Zbl1157.35328MR2425602
- H. Chen, W-X. Li, C-J. Xu, Gevrey regularity for solution of the spatially homogeneous Landau equation, Acta Math. Sci. Ser. B Engl. Ed. 29, no. 3, 673-686 (2009). Zbl1212.35035MR2514370
- H. Chen, W-X. Li, C-J. Xu, Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations, J. Differential Equations, 246, no. 1, 320-339 (2009). Zbl1162.35016MR2467026
- J-P. Eckmann, M. Hairer, Spectral properties of hypoelliptic operators, Comm. Math. Phys. 235, no. 2, 233-253 (2003). Zbl1040.35016MR1969727
- C. Fefferman, D.H. Phong, The uncertainty principle and sharp Gårding inequalities, Comm. Pure Appl. Math. 34, no. 3, 285-331 (1981). Zbl0458.35099MR611747
- Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys. 231, no. 3, 391-434 (2002). Zbl1042.76053MR1946444
- B. Helffer, F. Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Lecture Notes in Mathematics, 1862, Springer-Verlag, Berlin (2005). Zbl1072.35006MR2130405
- F. Hérau, F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal. 171, no. 2, 151-218 (2004). Zbl1139.82323MR2034753
- F. Hérau, K. Pravda-Starov, Anisotropic hypoelliptic estimates for Landau-type operators, submitted (2010). Zbl1221.35107
- F. Hérau, J. Sjöstrand, C. Stolk, Semiclassical analysis for the Kramers-Fokker-Planck equation, Comm. Partial Differential Equations, 30, no. 4-6, 689-760 (2005). Zbl1083.35149MR2153513
- L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119, 147-171 (1967). Zbl0156.10701MR222474
- L. Hörmander, The analysis of linear partial differential operators, vol. I-IV, Springer-Verlag (1985). Zbl0601.35001
- J.J. Kohn, Pseudodifferential operators and hypoellipticity, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), pp. 61-69, Amer. Math. Soc., Providence, R.I. (1973). Zbl0262.35007MR338592
- N. Lerner, The Wick calculus of pseudo-differential operators and some of its applications, Cubo Mat. Educ. 5, no. 1, 213-236 (2003). Zbl05508173MR1957713
- N. Lerner, Metrics on the phase space and non-selfadjoint pseudo-differential operators, Pseudo-Differential Operators, Theory and Applications, Vol. 3, Birkhäuser (2010). Zbl1186.47001MR2599384
- C. Mouhot, L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19, no. 4, 969-998 (2006). Zbl1169.82306MR2214953
- Y. Morimoto, C-J. Xu, Hypoellipticity for a class of kinetic equations, J. Math. Kyoto Univ. 47, no. 1, 129-152 (2007). Zbl1146.35027MR2359105
- Y. Morimoto, C-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, 247, no. 2, 596-617 (2009). Zbl1175.35024MR2523694
- K. Pravda-Starov, Subelliptic estimates for quadratic differential operators, to appear in American Journal of Mathematics (2010), http://arxiv.org/abs/0809.0186 Zbl1247.35015
- L.P. Rothschild, E.M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137, no. 3-4, 247-320 (1976). Zbl0346.35030MR436223
- C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, Vol. I, 71-305, North-Holland, Amsterdam (2002). Zbl1170.82369MR1942465
- C-J. Xu, Fourier analysis of non-cutoff Boltzmann equations, Lectures on the Analysis of Nonlinear Partial Differential Equations, Vol. 1, Morningside Lectures in Mathematics, Higher Education Press and International Press Beijing-Boston, 585-197 (2009).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.