Hypoelliptic estimates for some linear diffusive kinetic equations

Frédéric Hérau[1]

  • [1] Laboratoire de Mathématiques Jean Leray 2, rue de la Houssinière - BP 92208 F-44322 Nantes Cedex 3

Journées Équations aux dérivées partielles (2010)

  • page 1-13
  • ISSN: 0752-0360

Abstract

top
This note is an announcement of a forthcoming paper [13] in collaboration with K. Pravda-Starov on global hypoelliptic estimates for Fokker-Planck and linear Landau-type operators. Linear Landau-type equations are a class of inhomogeneous kinetic equations with anisotropic diffusion whose study is motivated by the linearization of the Landau equation near the Maxwellian distribution. By introducing a microlocal method by multiplier which can be adapted to various hypoelliptic kinetic equations, we establish optimal global hypoelliptic estimates with loss of 4 / 3 derivatives in a Sobolev scale exactly related to the anisotropy of the diffusion.

How to cite

top

Hérau, Frédéric. "Hypoelliptic estimates for some linear diffusive kinetic equations." Journées Équations aux dérivées partielles (2010): 1-13. <http://eudml.org/doc/116390>.

@article{Hérau2010,
abstract = {This note is an announcement of a forthcoming paper [13] in collaboration with K. Pravda-Starov on global hypoelliptic estimates for Fokker-Planck and linear Landau-type operators. Linear Landau-type equations are a class of inhomogeneous kinetic equations with anisotropic diffusion whose study is motivated by the linearization of the Landau equation near the Maxwellian distribution. By introducing a microlocal method by multiplier which can be adapted to various hypoelliptic kinetic equations, we establish optimal global hypoelliptic estimates with loss of $4/3$ derivatives in a Sobolev scale exactly related to the anisotropy of the diffusion.},
affiliation = {Laboratoire de Mathématiques Jean Leray 2, rue de la Houssinière - BP 92208 F-44322 Nantes Cedex 3},
author = {Hérau, Frédéric},
journal = {Journées Équations aux dérivées partielles},
keywords = {Kinetic equations; Regularity; global hypoelliptic estimates; hypoellipticity; anisotropic diffusion; Wick quantization; Landau; Fokker-Planck},
language = {eng},
month = {6},
pages = {1-13},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Hypoelliptic estimates for some linear diffusive kinetic equations},
url = {http://eudml.org/doc/116390},
year = {2010},
}

TY - JOUR
AU - Hérau, Frédéric
TI - Hypoelliptic estimates for some linear diffusive kinetic equations
JO - Journées Équations aux dérivées partielles
DA - 2010/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 13
AB - This note is an announcement of a forthcoming paper [13] in collaboration with K. Pravda-Starov on global hypoelliptic estimates for Fokker-Planck and linear Landau-type operators. Linear Landau-type equations are a class of inhomogeneous kinetic equations with anisotropic diffusion whose study is motivated by the linearization of the Landau equation near the Maxwellian distribution. By introducing a microlocal method by multiplier which can be adapted to various hypoelliptic kinetic equations, we establish optimal global hypoelliptic estimates with loss of $4/3$ derivatives in a Sobolev scale exactly related to the anisotropy of the diffusion.
LA - eng
KW - Kinetic equations; Regularity; global hypoelliptic estimates; hypoellipticity; anisotropic diffusion; Wick quantization; Landau; Fokker-Planck
UR - http://eudml.org/doc/116390
ER -

References

top
  1. R. Alexandre, Y. Morimoto, S. Ukai, C-J. Xu, T. Yang, Uncertainty principle and kinetic equations, J. Funct. Anal. 255, no. 8, 2013-2066 (2008). Zbl1166.35038MR2462585
  2. R. Alexandre, Y. Morimoto, S. Ukai, C-J. Xu, T. Yang, The Boltzmann equation without angular cutoff. Global existence and full regularity of the Boltzmann equation without angular cutoff. Part I : Maxwellian case and small singularity, preprint (2009), http://arxiv.org/abs/0912.1426 Zbl1230.35082
  3. P. Bolley, J. Camus, J. Nourrigat, La condition de Hörmander-Kohn pour les opérateurs pseudo-différentiels, Comm. Partial Differential Equations, 7, no. 2, 197-221 (1982). Zbl0497.35086MR646136
  4. F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pures Appl. (9) 81, no. 11, 1135-1159 (2002). Zbl1045.35093MR1949176
  5. H. Chen, W-X. Li, C-J. Xu, Propagation of Gevrey regularity for solutions of Landau equations, Kinet. Relat. Models, 1, no.3, 355-368 (2008). Zbl1157.35328MR2425602
  6. H. Chen, W-X. Li, C-J. Xu, Gevrey regularity for solution of the spatially homogeneous Landau equation, Acta Math. Sci. Ser. B Engl. Ed. 29, no. 3, 673-686 (2009). Zbl1212.35035MR2514370
  7. H. Chen, W-X. Li, C-J. Xu, Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations, J. Differential Equations, 246, no. 1, 320-339 (2009). Zbl1162.35016MR2467026
  8. J-P. Eckmann, M. Hairer, Spectral properties of hypoelliptic operators, Comm. Math. Phys. 235, no. 2, 233-253 (2003). Zbl1040.35016MR1969727
  9. C. Fefferman, D.H. Phong, The uncertainty principle and sharp Gårding inequalities, Comm. Pure Appl. Math. 34, no. 3, 285-331 (1981). Zbl0458.35099MR611747
  10. Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys. 231, no. 3, 391-434 (2002). Zbl1042.76053MR1946444
  11. B. Helffer, F. Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Lecture Notes in Mathematics, 1862, Springer-Verlag, Berlin (2005). Zbl1072.35006MR2130405
  12. F. Hérau, F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal. 171, no. 2, 151-218 (2004). Zbl1139.82323MR2034753
  13. F. Hérau, K. Pravda-Starov, Anisotropic hypoelliptic estimates for Landau-type operators, submitted (2010). Zbl1221.35107
  14. F. Hérau, J. Sjöstrand, C. Stolk, Semiclassical analysis for the Kramers-Fokker-Planck equation, Comm. Partial Differential Equations, 30, no. 4-6, 689-760 (2005). Zbl1083.35149MR2153513
  15. L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119, 147-171 (1967). Zbl0156.10701MR222474
  16. L. Hörmander, The analysis of linear partial differential operators, vol. I-IV, Springer-Verlag (1985). Zbl0601.35001
  17. J.J. Kohn, Pseudodifferential operators and hypoellipticity, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), pp. 61-69, Amer. Math. Soc., Providence, R.I. (1973). Zbl0262.35007MR338592
  18. N. Lerner, The Wick calculus of pseudo-differential operators and some of its applications, Cubo Mat. Educ. 5, no. 1, 213-236 (2003). Zbl05508173MR1957713
  19. N. Lerner, Metrics on the phase space and non-selfadjoint pseudo-differential operators, Pseudo-Differential Operators, Theory and Applications, Vol. 3, Birkhäuser (2010). Zbl1186.47001MR2599384
  20. C. Mouhot, L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19, no. 4, 969-998 (2006). Zbl1169.82306MR2214953
  21. Y. Morimoto, C-J. Xu, Hypoellipticity for a class of kinetic equations, J. Math. Kyoto Univ. 47, no. 1, 129-152 (2007). Zbl1146.35027MR2359105
  22. Y. Morimoto, C-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, 247, no. 2, 596-617 (2009). Zbl1175.35024MR2523694
  23. K. Pravda-Starov, Subelliptic estimates for quadratic differential operators, to appear in American Journal of Mathematics (2010), http://arxiv.org/abs/0809.0186 Zbl1247.35015
  24. L.P. Rothschild, E.M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137, no. 3-4, 247-320 (1976). Zbl0346.35030MR436223
  25. C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, Vol. I, 71-305, North-Holland, Amsterdam (2002). Zbl1170.82369MR1942465
  26. C-J. Xu, Fourier analysis of non-cutoff Boltzmann equations, Lectures on the Analysis of Nonlinear Partial Differential Equations, Vol. 1, Morningside Lectures in Mathematics, Higher Education Press and International Press Beijing-Boston, 585-197 (2009). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.