Heights of roots of polynomials with odd coefficients
J. Garza[1]; M. I. M. Ishak[1]; M. J. Mossinghoff[2]; C. G. Pinner[1]; B. Wiles[1]
- [1] Department of Mathematics Kansas State University Manhattan, KS 66506
 - [2] Department of Mathematics Davidson College Davidson, NC 28035-6996
 
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 2, page 369-381
 - ISSN: 1246-7405
 
Access Full Article
topAbstract
topHow to cite
topGarza, J., et al. "Heights of roots of polynomials with odd coefficients." Journal de Théorie des Nombres de Bordeaux 22.2 (2010): 369-381. <http://eudml.org/doc/116409>.
@article{Garza2010,
	abstract = {Let $\alpha $ be a zero of a polynomial of degree $n$ with odd coefficients, with $\alpha $ not a root of unity. We show that the height of $\alpha $ satisfies\[ h(\alpha )\ge \frac\{0.4278\}\{n+1\}. \]More generally, we obtain bounds when the coefficients are all congruent to $1$ modulo $m$ for some $m\ge 2$.},
	affiliation = {Department of Mathematics Kansas State University Manhattan, KS 66506; Department of Mathematics Kansas State University Manhattan, KS 66506; Department of Mathematics Davidson College Davidson, NC 28035-6996; Department of Mathematics Kansas State University Manhattan, KS 66506; Department of Mathematics Kansas State University Manhattan, KS 66506},
	author = {Garza, J., Ishak, M. I. M., Mossinghoff, M. J., Pinner, C. G., Wiles, B.},
	journal = {Journal de Théorie des Nombres de Bordeaux},
	keywords = {Heights; Mahler measure; Lehmer’s problem; polynomials with odd coefficients; roots; height},
	language = {eng},
	number = {2},
	pages = {369-381},
	publisher = {Université Bordeaux 1},
	title = {Heights of roots of polynomials with odd coefficients},
	url = {http://eudml.org/doc/116409},
	volume = {22},
	year = {2010},
}
TY  - JOUR
AU  - Garza, J.
AU  - Ishak, M. I. M.
AU  - Mossinghoff, M. J.
AU  - Pinner, C. G.
AU  - Wiles, B.
TI  - Heights of roots of polynomials with odd coefficients
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2010
PB  - Université Bordeaux 1
VL  - 22
IS  - 2
SP  - 369
EP  - 381
AB  - Let $\alpha $ be a zero of a polynomial of degree $n$ with odd coefficients, with $\alpha $ not a root of unity. We show that the height of $\alpha $ satisfies\[ h(\alpha )\ge \frac{0.4278}{n+1}. \]More generally, we obtain bounds when the coefficients are all congruent to $1$ modulo $m$ for some $m\ge 2$.
LA  - eng
KW  - Heights; Mahler measure; Lehmer’s problem; polynomials with odd coefficients; roots; height
UR  - http://eudml.org/doc/116409
ER  - 
References
top- P. Borwein, E. Dobrowolski, and M. J. Mossinghoff, Lehmer’s problem for polynomials with odd coefficients. Ann. of Math. (2) 166 (2007), no. 2, 347–366. Zbl1172.11034MR2373144
 - A. Dubickas and M. J. Mossinghoff, Auxiliary polynomials for some problems regarding Mahler’s measure. Acta Arith. 119 (2005), no. 1, 65–79. Zbl1074.11018MR2163518
 - M. I. M. Ishak, M. J. Mossinghoff, C. G. Pinner, and B. Wiles, Lower bounds for heights in cyclotomic extensions. J. Number Theory 130 (2010), no. 6, 1408–1424. Zbl1203.11072MR2643901
 - V. A. Lebesgue, Sur l’impossibilité, en nombres entiers, de l’équation . Nouv. Ann. Math. (1) 9 (1850), 178–181.
 - W. Ljunggren, Einige Bemerkungen über die Darstellung ganzer Zahlen durch binäre kubische Formen mit positiver Diskriminante. Acta Math. 75 (1943), 1–21. Zbl0060.09104MR17303
 - T. Nagell, Des équations indéterminées et . Norsk Matematisk Forening, Skr. Ser. I (1921), no. 2, 1–14.
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.