Linear forms of a given Diophantine type
Oleg N. German[1]; Nikolay G. Moshchevitin[1]
- [1] Moscow State University Vorobiovy Gory, GSP–2 119992 Moscow, RUSSIA
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 2, page 383-396
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topGerman, Oleg N., and Moshchevitin, Nikolay G.. "Linear forms of a given Diophantine type." Journal de Théorie des Nombres de Bordeaux 22.2 (2010): 383-396. <http://eudml.org/doc/116410>.
@article{German2010,
abstract = {We prove a result on the existence of linear forms of a given Diophantine type.},
affiliation = {Moscow State University Vorobiovy Gory, GSP–2 119992 Moscow, RUSSIA; Moscow State University Vorobiovy Gory, GSP–2 119992 Moscow, RUSSIA},
author = {German, Oleg N., Moshchevitin, Nikolay G.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {linear forms; best approximation},
language = {eng},
number = {2},
pages = {383-396},
publisher = {Université Bordeaux 1},
title = {Linear forms of a given Diophantine type},
url = {http://eudml.org/doc/116410},
volume = {22},
year = {2010},
}
TY - JOUR
AU - German, Oleg N.
AU - Moshchevitin, Nikolay G.
TI - Linear forms of a given Diophantine type
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 2
SP - 383
EP - 396
AB - We prove a result on the existence of linear forms of a given Diophantine type.
LA - eng
KW - linear forms; best approximation
UR - http://eudml.org/doc/116410
ER -
References
top- R. K. Akhunzhanov, N. G. Moshchevitin, Vectors of given Diophantine type. Mathematical Notes 80:3 (2006), 318–328. Zbl1156.11325MR2278876
- V. Beresnevich, H. Dickinson, S. L. Velani, Sets of “exact logarithmic” order in the theory of Diophantine approximation. Math. Annalen 321 (2001), 253–273. Zbl1006.11039MR1866488
- Y. Bugeaud, Sets of exact approximation order by rational numbers. Math. Ann. 327 (2003), 171–190. Zbl1044.11059MR2006007
- Y. Bugeaud, Sets of exact approximation order by rational numbers II. Univ. Disrtib. Theory 3 (2008), 9–20. Zbl1219.11014MR2439605
- T. W. Cusick, M. E. Flahive, The Markoff and Lagrange spectra. AMS, Providence, Math. surveys and monographs 30, 1989. Zbl0685.10023MR1010419
- O. N. German, Asymptotic directions for best approximations of an -dimensional linear form. (Russian) Mat. Zametki, 75:1 (2004), 55–70; translation in Math. Notes 75:1-2 (2004), 51–65. Zbl1111.11036MR2053149
- M. Hall Jr., On the sum and product of continued fractions. Ann. of Math. (2) 48 (1948), 966–993. Zbl0030.02201MR22568
- V. Jarnik, Uber die simultanen diophantischen Approximationen. Math. Zeitschr. 33 (1931), 505–543. Zbl57.1370.01MR1545226
- V. Jarnik, Un Théorème d’existence pour Les Approximations Diophantiennes. L’Enseignement mathématique 25 (1969), 171–175. Zbl0177.07201MR248088
- N. G. Moshchevitin, On simultaneous Diophantine approximations. Vectors of given Diophantine type. Mathematical Notes 61:5 (1997), 590–599. Zbl0916.11040MR1620125
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.