Finite and periodic orbits of shift radix systems
Peter Kirschenhofer[1]; Attila Pethő[2]; Paul Surer[3]; Jörg Thuswaldner[1]
- [1] Chair of Mathematics and Statistics University of Leoben Franz-Josef-Str. 18 A-8700 Leoben, AUSTRIA
- [2] Faculty of Informatics Number Theory Research Group Hungarian Academy of Sciences and University of Debrecen P.O. Box 12 H-4010 Debrecen, HUNGARY
- [3] Departamento de Matemática IBILCE - UNESP Rua Cristóvão Colombo, 2265 - Jardim Nazareth 15.054-000 São José do Rio Preto - SP, BRAZIL
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 2, page 421-448
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKirschenhofer, Peter, et al. "Finite and periodic orbits of shift radix systems." Journal de Théorie des Nombres de Bordeaux 22.2 (2010): 421-448. <http://eudml.org/doc/116413>.
@article{Kirschenhofer2010,
abstract = {For $\mathbf\{r\}=(r_0,\ldots ,r_\{d-1\}) \in \mathbb\{R\}^d$ define the function\[ \tau \_\mathbf\{r\}: \, \{\mathbb\{Z\}\}^d \rightarrow \{\mathbb\{Z\}\}^d,\quad \mathbf\{z\}=(z\_0,\ldots ,z\_\{d-1\}) \mapsto (z\_1,\ldots ,z\_\{d-1\},-\left\lfloor \mathbf\{rz\} \right\rfloor ), \]where $\mathbf\{rz\}$ is the scalar product of the vectors $\mathbf\{r\}$ and $\mathbf\{z\}$. If each orbit of $\tau _\mathbf\{r\}$ ends up at $\mathbf\{0\}$, we call $\tau _\mathbf\{r\}$ a shift radix system. It is a well-known fact that each orbit of $\tau _\mathbf\{r\}$ ends up periodically if the polynomial $t^d+r_\{d-1\}t^\{d-1\}+\cdots +r_0$ associated to $\mathbf\{r\}$ is contractive. On the other hand, whenever this polynomial has at least one root outside the unit disc, there exist starting vectors that give rise to unbounded orbits. The present paper deals with the remaining situations of periodicity properties of the mappings $\tau _\mathbf\{r\}$ for vectors $\mathbf\{r\}$ associated to polynomials whose roots have modulus less than or equal to one with equality in at least one case. We show that for a large class of vectors $\{\bf r\}$ belonging to the above class the ultimate periodicity of the orbits of $\tau _\mathbf\{r\}$ is equivalent to the fact that $\tau _\mathbf\{s\}$ is a shift radix system or has another prescribed orbit structure for a certain parameter $\mathbf\{s\}$ related to $\mathbf\{r\}$. These results are combined with new algorithmic results in order to characterize vectors $\mathbf\{r\}$ of the above class that give rise to ultimately periodic orbits of $\tau _\mathbf\{r\}$ for each starting value. In particular, we work out the description of these vectors $\mathbf\{r\}$ for the case $d=3$. This leads to sets which seem to have a very intricate structure.},
affiliation = {Chair of Mathematics and Statistics University of Leoben Franz-Josef-Str. 18 A-8700 Leoben, AUSTRIA; Faculty of Informatics Number Theory Research Group Hungarian Academy of Sciences and University of Debrecen P.O. Box 12 H-4010 Debrecen, HUNGARY; Departamento de Matemática IBILCE - UNESP Rua Cristóvão Colombo, 2265 - Jardim Nazareth 15.054-000 São José do Rio Preto - SP, BRAZIL; Chair of Mathematics and Statistics University of Leoben Franz-Josef-Str. 18 A-8700 Leoben, AUSTRIA},
author = {Kirschenhofer, Peter, Pethő, Attila, Surer, Paul, Thuswaldner, Jörg},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Contractive polynomial; shift radix system; periodic orbit; periodic orbit shift radix system; periodic orbit shift radix system; periodic orbit shift radix system},
language = {eng},
number = {2},
pages = {421-448},
publisher = {Université Bordeaux 1},
title = {Finite and periodic orbits of shift radix systems},
url = {http://eudml.org/doc/116413},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Kirschenhofer, Peter
AU - Pethő, Attila
AU - Surer, Paul
AU - Thuswaldner, Jörg
TI - Finite and periodic orbits of shift radix systems
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 2
SP - 421
EP - 448
AB - For $\mathbf{r}=(r_0,\ldots ,r_{d-1}) \in \mathbb{R}^d$ define the function\[ \tau _\mathbf{r}: \, {\mathbb{Z}}^d \rightarrow {\mathbb{Z}}^d,\quad \mathbf{z}=(z_0,\ldots ,z_{d-1}) \mapsto (z_1,\ldots ,z_{d-1},-\left\lfloor \mathbf{rz} \right\rfloor ), \]where $\mathbf{rz}$ is the scalar product of the vectors $\mathbf{r}$ and $\mathbf{z}$. If each orbit of $\tau _\mathbf{r}$ ends up at $\mathbf{0}$, we call $\tau _\mathbf{r}$ a shift radix system. It is a well-known fact that each orbit of $\tau _\mathbf{r}$ ends up periodically if the polynomial $t^d+r_{d-1}t^{d-1}+\cdots +r_0$ associated to $\mathbf{r}$ is contractive. On the other hand, whenever this polynomial has at least one root outside the unit disc, there exist starting vectors that give rise to unbounded orbits. The present paper deals with the remaining situations of periodicity properties of the mappings $\tau _\mathbf{r}$ for vectors $\mathbf{r}$ associated to polynomials whose roots have modulus less than or equal to one with equality in at least one case. We show that for a large class of vectors ${\bf r}$ belonging to the above class the ultimate periodicity of the orbits of $\tau _\mathbf{r}$ is equivalent to the fact that $\tau _\mathbf{s}$ is a shift radix system or has another prescribed orbit structure for a certain parameter $\mathbf{s}$ related to $\mathbf{r}$. These results are combined with new algorithmic results in order to characterize vectors $\mathbf{r}$ of the above class that give rise to ultimately periodic orbits of $\tau _\mathbf{r}$ for each starting value. In particular, we work out the description of these vectors $\mathbf{r}$ for the case $d=3$. This leads to sets which seem to have a very intricate structure.
LA - eng
KW - Contractive polynomial; shift radix system; periodic orbit; periodic orbit shift radix system; periodic orbit shift radix system; periodic orbit shift radix system
UR - http://eudml.org/doc/116413
ER -
References
top- S. Akiyama, T. Borbély, H. Brunotte, A. Pethő, and J. M. Thuswaldner, Generalized radix representations and dynamical systems. I. Acta Math. Hungar. 108 (2005), 207–238. Zbl1110.11003
- S. Akiyama, H. Brunotte, A. Pethő, and W. Steiner, Remarks on a conjecture on certain integer sequences. Period. Math. Hungar. 52 (2006), 1–17. Zbl1121.11014
- S. Akiyama, H. Brunotte, A. Pethő, and W. Steiner, Periodicity of certain piecewise affine planar maps. Tsukuba J. Math. 32 (2008), 197–251. Zbl1209.37018MR2433023
- S. Akiyama, H. Brunotte, A. Pethő, and J. M. Thuswaldner, Generalized radix representations and dynamical systems. II. Acta Arith. 121 (2006), 21–61. Zbl1142.11055MR2216302
- S. Akiyama, C. Frougny, and J. Sakarovitch, Powers of rationals modulo 1 and rational base number systems. Israel J. Math. 168 (2008), 53–91. Zbl1214.11089MR2448050
- D. W. Boyd, The beta expansion for Salem numbers. In Organic mathematics (Burnaby, BC, 1995), vol. 20 of CMS Conf. Proc. Amer. Math. Soc., Providence, RI, 1997, 117–131. Zbl1053.11536MR1483916
- H. Brunotte, On trinomial bases of radix representations of algebraic integers. Acta Sci. Math. (Szeged) 67 (2001), 521–527. Zbl0996.11067MR1876451
- A. T. Fam, The volume of the coefficient space stability domain of monic polynomials. Proc. IEEE Int. Symp. Circuits and Systems 2 (1989), 1780–1783.
- A. T. Fam and J. S. Meditch, A canonical parameter space for linear systems design. IEEE Trans. Autom. Control 23 (1978), 454–458. Zbl0377.93021MR528928
- C. Frougny and B. Solomyak, Finite beta-expansions. Ergodic Theory Dynam. Systems 12 (1992), 713–723. Zbl0814.68065MR1200339
- A. Huszti, K. Scheicher, P. Surer, and J. M. Thuswaldner, Three-dimensional symmetric shift radix systems. Acta Arith. 129 (2007), 147–166. Zbl1143.11006MR2342432
- P. Kirschenhofer, A. Pethő, and J. M. Thuswaldner, On a family of three term nonlinear integer recurrences. Int. J. Number Theory 4 (2008), 135–146. Zbl1230.11014MR2387921
- E. Lehmer, On the magnitude of the coefficients of the cyclotomic polynomial. Bull. Amer. Math. Soc. 42 (1936), 389–392. Zbl0014.39203MR1563307
- J. Lowenstein, S. Hatjispyros, and F. Vivaldi, Quasi-periodicity, global stability and scaling in a model of Hamiltonian round-off. Chaos 7 (1997), 49–66. Zbl0933.37059MR1439807
- A. Pethő, On a polynomial transformation and its application to the construction of a public key cryptosystem. In Computational number theory (Debrecen, 1989), de Gruyter, Berlin, 1991, 31–43. Zbl0733.94014MR1151853
- A. Pethő, On the boundary of the closure of the set of contractive polynomials. Integers 9 (2009), 311 – 325. Zbl1284.11017MR2534915
- K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980), 269–278. Zbl0494.10040MR576976
- I. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. II. J. reine und angew. Math 148 (1918), 122–145.
- P. Surer, Characterisation results for shift radix systems. Math. Pannon. 18 (2007), 265–297. Zbl1164.11012MR2363119
- P. Surer, -shift radix systems and radix representations with shifted digit sets. Publ. Math. (Debrecen) 74 (2009), 19–43. Zbl1192.11006MR2490420
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.