The period-index problem in WC-groups IV: a local transition theorem

Pete L. Clark[1]

  • [1] Department of Mathematics Boyd Graduate Studies Research Center University of Georgia Athens, GA 30602-7403, USA

Journal de Théorie des Nombres de Bordeaux (2010)

  • Volume: 22, Issue: 3, page 583-606
  • ISSN: 1246-7405

Abstract

top
Let K be a complete discretely valued field with perfect residue field k . Assuming upper bounds on the relation between period and index for WC-groups over k , we deduce corresponding upper bounds on the relation between period and index for WC-groups over K . Up to a constant depending only on the dimension of the torsor, we recover theorems of Lichtenbaum and Milne in a “duality free” context. Our techniques include the use of LLR models of torsors under abelian varieties with good reduction and a generalization of the period-index obstruction map to flat cohomology. In an appendix, we consider some related issues of a field-arithmetic nature.

How to cite

top

Clark, Pete L.. "The period-index problem in WC-groups IV: a local transition theorem." Journal de Théorie des Nombres de Bordeaux 22.3 (2010): 583-606. <http://eudml.org/doc/116422>.

@article{Clark2010,
abstract = {Let $K$ be a complete discretely valued field with perfect residue field $k$. Assuming upper bounds on the relation between period and index for WC-groups over $k$, we deduce corresponding upper bounds on the relation between period and index for WC-groups over $K$. Up to a constant depending only on the dimension of the torsor, we recover theorems of Lichtenbaum and Milne in a “duality free” context. Our techniques include the use of LLR models of torsors under abelian varieties with good reduction and a generalization of the period-index obstruction map to flat cohomology. In an appendix, we consider some related issues of a field-arithmetic nature.},
affiliation = {Department of Mathematics Boyd Graduate Studies Research Center University of Georgia Athens, GA 30602-7403, USA},
author = {Clark, Pete L.},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {583-606},
publisher = {Université Bordeaux 1},
title = {The period-index problem in WC-groups IV: a local transition theorem},
url = {http://eudml.org/doc/116422},
volume = {22},
year = {2010},
}

TY - JOUR
AU - Clark, Pete L.
TI - The period-index problem in WC-groups IV: a local transition theorem
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 3
SP - 583
EP - 606
AB - Let $K$ be a complete discretely valued field with perfect residue field $k$. Assuming upper bounds on the relation between period and index for WC-groups over $k$, we deduce corresponding upper bounds on the relation between period and index for WC-groups over $K$. Up to a constant depending only on the dimension of the torsor, we recover theorems of Lichtenbaum and Milne in a “duality free” context. Our techniques include the use of LLR models of torsors under abelian varieties with good reduction and a generalization of the period-index obstruction map to flat cohomology. In an appendix, we consider some related issues of a field-arithmetic nature.
LA - eng
UR - http://eudml.org/doc/116422
ER -

References

top
  1. S. Bosch and X. Xarles, Component groups of Néron models via rigid uniformization. Math. Ann. 306 (1996), 459–486. Zbl0869.14020MR1415074
  2. S. Bosch, W. Lütkebohmert and M. Raynaud, Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete 21, Springer-Verlag, 1990. Zbl0705.14001MR1045822
  3. J.-P. Serre, Cohomologie Galoisienne. Lecture Notes in Mathematics 5, 5th revised edition, Springer-Verlag, 1994. Zbl0812.12002MR1324577
  4. C. Chevalley, Démonstration d’une hypothèse de M. Artin. Abh. Math. Sem. Univ. Hamburg 11 (1936), 73–75. Zbl0011.14504
  5. J.-P. Serre, Corps Locaux. Hermann, Paris, 1962. MR354618
  6. P.L. Clark and S. Sharif, Period, index and potential Sha. Algebra and Number Theory 4 (2010), No. 2, 151–174. Zbl1200.11037MR2592017
  7. P.L. Clark and X. Xarles, Local bounds for torsion points on abelian varieties. Canad. J. Math. 60 (2008), no. 3, 532–555. Zbl1204.11090MR2414956
  8. A.J. de Jong, The period-index problem for the Brauer group of an algebraic surface. Duke Math. J. 123 (2004), no. 1, 71–94. Zbl1060.14025MR2060023
  9. M.D. Fried and M. Jarden, Field arithmetic. Third edition. Revised by Jarden. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas, 11. Springer-Verlag, Berlin, 2008. MR2445111
  10. L. Gerritzen, Periode und Index eines prinzipal-homogenen Raumes über gewissen abelschen Varietäten. Manuscripta Math. 8 (1973), 131–142. Zbl0244.14015MR337998
  11. W.-D. Geyer and M. Jarden, Non-PAC fields whose Henselian closures are separably closed. Math. Research Letters 8 (2001), 509–519. Zbl0991.12004MR1849266
  12. O. Gabber, Q. Liu and D. Lorenzini, Moving Lemmas and the Index of Algebraic Varieties. 2009 preprint. 
  13. M.J. Greenberg, Rational points in Henselian discrete valuation rings. Publ. Math. IHES 31 (1967), 59–64. MR207700
  14. M.J. Greenberg, Lectures on forms in many variables. W. A. Benjamin, Inc., New York-Amsterdam 1969. Zbl0185.08304MR241358
  15. P. Gille and T. Szamuely, Central Simple Algebras and Galois Cohomology. Cambridge Studies in Advanced Mathematics 101, Cambridge University Press, 2006. Zbl1137.12001MR2266528
  16. T. Harase, On the index-period problem for algebraic curves and abelian varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 13–20. Zbl0258.14008MR327778
  17. D. Harbater, J. Hartmann and D. Krashen, Applications of patching to quadratic forms and central simple algebras. Invent. Math. 178 (2009), no. 2, 231–263. Zbl1259.12003MR2545681
  18. S. Lang, On Quasi Algebraic Closure. Annals of Math. 55 (1952), 373–390. Zbl0046.26202MR46388
  19. S. Lang, Algebraic groups over finite fields. Amer. J. Math. 78 (1956), 555–563. Zbl0073.37901MR86367
  20. S. Lang and J. Tate, Principal homogeneous spaces over abelian varieties. Amer. J. Math. 80 (1958), 659–684. Zbl0097.36203MR106226
  21. Q. Liu, following O. Gabber, Separable index of smooth algebraic varieties, 2009 preprint. 
  22. S. Lichtenbaum, The period-index problem for elliptic curves. Amer. J. Math. 90 (1968), 1209–1223. Zbl0187.18602MR237506
  23. S. Lichtenbaum, Duality theorems for curves over p -adic fields. Invent. Math. 7 (1969), 120–136. Zbl0186.26402MR242831
  24. M. Lieblich, Twisted sheaves and the period-index problem. Compos. Math. 144 (2008), no. 1, 1–31. Zbl1133.14018MR2388554
  25. D. Lorenzini, Q. Liu and M. Raynaud, Néron models, Lie algebras, and reduction of curves of genus one. Invent. math. 157 (2004), 455–518. Zbl1060.14037MR2092767
  26. A. S. Merkur’ev and A.A. Suslin, K -cohomology of Severi-Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1011–1046, 1135–1136. Zbl0525.18008MR675529
  27. J. Milne, Étale cohomology. Princeton Mathematical Series, 33. Princeton University Press, Princeton, N.J., 1980. Zbl0433.14012MR559531
  28. D. Mumford, Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, No. 5. Bombay; Oxford University Press, London 1970. Zbl0223.14022MR282985
  29. C.H. O’Neil, The period-index obstruction for elliptic curves. J. Number Theory 95 (2002), 329–339. Zbl1033.11029MR1924106
  30. B. Poonen and M. Stoll, The Cassels-Tate pairing on polarized abelian varieties. Ann. of. Math. (2) 150 (1999), 1109–1149. Zbl1024.11040MR1740984
  31. D.J. Saltman, Division algebras over p -adic curves. (English summary) J. Ramanujan Math. Soc. 12 (1997), no. 1, 25–47. Zbl0902.16021MR1462850
  32. F. K. Schmidt, Die Theorie der Klassenkörper über einem Körper algebraischer Funktionen in einer Unbestimmten und mit endlichem Koeffizientenbereich. Sitz.-Ber. phys. med. Soz. 62 (1931), 267–284. Zbl0003.38703
  33. I.R. Shafarevich, Principal homogeneous spaces defined over a function field. (Russian) Trudy Mat. Inst. Steklov. 64 (1961), 316–346. Zbl0142.18401MR162806
  34. R. Steinberg, Cohomologie galoisienne des groupes algébriques linéaires. Colloques de Bruxelles, 1962, 53–67. MR186719
  35. O. Teichmüller, p-Algebren. Deutsche Math. 1 (1936), 362–368. Zbl0014.19901
  36. C. Tsen, Divisionsalgebren über Funktionenkörper. Nachr. Ges. Wiss. Göttingen (1933), 335. Zbl0007.29401
  37. P.L. Clark, Period-index problems in WC-groups I: elliptic curves. J. Number Theory 114 (2005), 193–208. Zbl1087.11036MR2163913
  38. P.L. Clark, Period-index problems in WC-groups II: abelian varieties. Submitted. 
  39. P.L. Clark, Period-index problems in WC-groups III: biconic curves. Preprint. 
  40. P.L. Clark, Period-index problems in WC-groups V: Cartier symbols. In preparation. 
  41. Ju. G. Zarhin, Noncommutative cohomology and Mumford groups. (Russian) Mat. Zametki 15 (1974), 415–419. Zbl0291.14015MR354612

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.