The period-index problem in WC-groups IV: a local transition theorem
- [1] Department of Mathematics Boyd Graduate Studies Research Center University of Georgia Athens, GA 30602-7403, USA
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 3, page 583-606
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topClark, Pete L.. "The period-index problem in WC-groups IV: a local transition theorem." Journal de Théorie des Nombres de Bordeaux 22.3 (2010): 583-606. <http://eudml.org/doc/116422>.
@article{Clark2010,
abstract = {Let $K$ be a complete discretely valued field with perfect residue field $k$. Assuming upper bounds on the relation between period and index for WC-groups over $k$, we deduce corresponding upper bounds on the relation between period and index for WC-groups over $K$. Up to a constant depending only on the dimension of the torsor, we recover theorems of Lichtenbaum and Milne in a “duality free” context. Our techniques include the use of LLR models of torsors under abelian varieties with good reduction and a generalization of the period-index obstruction map to flat cohomology. In an appendix, we consider some related issues of a field-arithmetic nature.},
affiliation = {Department of Mathematics Boyd Graduate Studies Research Center University of Georgia Athens, GA 30602-7403, USA},
author = {Clark, Pete L.},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {583-606},
publisher = {Université Bordeaux 1},
title = {The period-index problem in WC-groups IV: a local transition theorem},
url = {http://eudml.org/doc/116422},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Clark, Pete L.
TI - The period-index problem in WC-groups IV: a local transition theorem
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 3
SP - 583
EP - 606
AB - Let $K$ be a complete discretely valued field with perfect residue field $k$. Assuming upper bounds on the relation between period and index for WC-groups over $k$, we deduce corresponding upper bounds on the relation between period and index for WC-groups over $K$. Up to a constant depending only on the dimension of the torsor, we recover theorems of Lichtenbaum and Milne in a “duality free” context. Our techniques include the use of LLR models of torsors under abelian varieties with good reduction and a generalization of the period-index obstruction map to flat cohomology. In an appendix, we consider some related issues of a field-arithmetic nature.
LA - eng
UR - http://eudml.org/doc/116422
ER -
References
top- S. Bosch and X. Xarles, Component groups of Néron models via rigid uniformization. Math. Ann. 306 (1996), 459–486. Zbl0869.14020MR1415074
- S. Bosch, W. Lütkebohmert and M. Raynaud, Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete 21, Springer-Verlag, 1990. Zbl0705.14001MR1045822
- J.-P. Serre, Cohomologie Galoisienne. Lecture Notes in Mathematics 5, 5th revised edition, Springer-Verlag, 1994. Zbl0812.12002MR1324577
- C. Chevalley, Démonstration d’une hypothèse de M. Artin. Abh. Math. Sem. Univ. Hamburg 11 (1936), 73–75. Zbl0011.14504
- J.-P. Serre, Corps Locaux. Hermann, Paris, 1962. MR354618
- P.L. Clark and S. Sharif, Period, index and potential Sha. Algebra and Number Theory 4 (2010), No. 2, 151–174. Zbl1200.11037MR2592017
- P.L. Clark and X. Xarles, Local bounds for torsion points on abelian varieties. Canad. J. Math. 60 (2008), no. 3, 532–555. Zbl1204.11090MR2414956
- A.J. de Jong, The period-index problem for the Brauer group of an algebraic surface. Duke Math. J. 123 (2004), no. 1, 71–94. Zbl1060.14025MR2060023
- M.D. Fried and M. Jarden, Field arithmetic. Third edition. Revised by Jarden. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas, 11. Springer-Verlag, Berlin, 2008. MR2445111
- L. Gerritzen, Periode und Index eines prinzipal-homogenen Raumes über gewissen abelschen Varietäten. Manuscripta Math. 8 (1973), 131–142. Zbl0244.14015MR337998
- W.-D. Geyer and M. Jarden, Non-PAC fields whose Henselian closures are separably closed. Math. Research Letters 8 (2001), 509–519. Zbl0991.12004MR1849266
- O. Gabber, Q. Liu and D. Lorenzini, Moving Lemmas and the Index of Algebraic Varieties. 2009 preprint.
- M.J. Greenberg, Rational points in Henselian discrete valuation rings. Publ. Math. IHES 31 (1967), 59–64. MR207700
- M.J. Greenberg, Lectures on forms in many variables. W. A. Benjamin, Inc., New York-Amsterdam 1969. Zbl0185.08304MR241358
- P. Gille and T. Szamuely, Central Simple Algebras and Galois Cohomology. Cambridge Studies in Advanced Mathematics 101, Cambridge University Press, 2006. Zbl1137.12001MR2266528
- T. Harase, On the index-period problem for algebraic curves and abelian varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 13–20. Zbl0258.14008MR327778
- D. Harbater, J. Hartmann and D. Krashen, Applications of patching to quadratic forms and central simple algebras. Invent. Math. 178 (2009), no. 2, 231–263. Zbl1259.12003MR2545681
- S. Lang, On Quasi Algebraic Closure. Annals of Math. 55 (1952), 373–390. Zbl0046.26202MR46388
- S. Lang, Algebraic groups over finite fields. Amer. J. Math. 78 (1956), 555–563. Zbl0073.37901MR86367
- S. Lang and J. Tate, Principal homogeneous spaces over abelian varieties. Amer. J. Math. 80 (1958), 659–684. Zbl0097.36203MR106226
- Q. Liu, following O. Gabber, Separable index of smooth algebraic varieties, 2009 preprint.
- S. Lichtenbaum, The period-index problem for elliptic curves. Amer. J. Math. 90 (1968), 1209–1223. Zbl0187.18602MR237506
- S. Lichtenbaum, Duality theorems for curves over -adic fields. Invent. Math. 7 (1969), 120–136. Zbl0186.26402MR242831
- M. Lieblich, Twisted sheaves and the period-index problem. Compos. Math. 144 (2008), no. 1, 1–31. Zbl1133.14018MR2388554
- D. Lorenzini, Q. Liu and M. Raynaud, Néron models, Lie algebras, and reduction of curves of genus one. Invent. math. 157 (2004), 455–518. Zbl1060.14037MR2092767
- A. S. Merkur’ev and A.A. Suslin, -cohomology of Severi-Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1011–1046, 1135–1136. Zbl0525.18008MR675529
- J. Milne, Étale cohomology. Princeton Mathematical Series, 33. Princeton University Press, Princeton, N.J., 1980. Zbl0433.14012MR559531
- D. Mumford, Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, No. 5. Bombay; Oxford University Press, London 1970. Zbl0223.14022MR282985
- C.H. O’Neil, The period-index obstruction for elliptic curves. J. Number Theory 95 (2002), 329–339. Zbl1033.11029MR1924106
- B. Poonen and M. Stoll, The Cassels-Tate pairing on polarized abelian varieties. Ann. of. Math. (2) 150 (1999), 1109–1149. Zbl1024.11040MR1740984
- D.J. Saltman, Division algebras over -adic curves. (English summary) J. Ramanujan Math. Soc. 12 (1997), no. 1, 25–47. Zbl0902.16021MR1462850
- F. K. Schmidt, Die Theorie der Klassenkörper über einem Körper algebraischer Funktionen in einer Unbestimmten und mit endlichem Koeffizientenbereich. Sitz.-Ber. phys. med. Soz. 62 (1931), 267–284. Zbl0003.38703
- I.R. Shafarevich, Principal homogeneous spaces defined over a function field. (Russian) Trudy Mat. Inst. Steklov. 64 (1961), 316–346. Zbl0142.18401MR162806
- R. Steinberg, Cohomologie galoisienne des groupes algébriques linéaires. Colloques de Bruxelles, 1962, 53–67. MR186719
- O. Teichmüller, p-Algebren. Deutsche Math. 1 (1936), 362–368. Zbl0014.19901
- C. Tsen, Divisionsalgebren über Funktionenkörper. Nachr. Ges. Wiss. Göttingen (1933), 335. Zbl0007.29401
- P.L. Clark, Period-index problems in WC-groups I: elliptic curves. J. Number Theory 114 (2005), 193–208. Zbl1087.11036MR2163913
- P.L. Clark, Period-index problems in WC-groups II: abelian varieties. Submitted.
- P.L. Clark, Period-index problems in WC-groups III: biconic curves. Preprint.
- P.L. Clark, Period-index problems in WC-groups V: Cartier symbols. In preparation.
- Ju. G. Zarhin, Noncommutative cohomology and Mumford groups. (Russian) Mat. Zametki 15 (1974), 415–419. Zbl0291.14015MR354612
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.