Cohomologial dimension of Laumon 1-motives up to isogenies
- [1] Università degli Studi di Padova Via Trieste, 63 35100 Padova, Italy
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 3, page 719-726
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topMazzari, Nicola. "Cohomologial dimension of Laumon 1-motives up to isogenies." Journal de Théorie des Nombres de Bordeaux 22.3 (2010): 719-726. <http://eudml.org/doc/116429>.
@article{Mazzari2010,
abstract = {We prove that the category of Laumon 1-motives up to isogenies over a field of characteristic zero is of cohomological dimension $\le 1$. As a consequence this implies the same result for the category of formal Hodge structures of level $\le 1$ (over $\mathbb\{Q\}$).},
affiliation = {Università degli Studi di Padova Via Trieste, 63 35100 Padova, Italy},
author = {Mazzari, Nicola},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {laumon 1-motives; cohomological dimension},
language = {eng},
number = {3},
pages = {719-726},
publisher = {Université Bordeaux 1},
title = {Cohomologial dimension of Laumon 1-motives up to isogenies},
url = {http://eudml.org/doc/116429},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Mazzari, Nicola
TI - Cohomologial dimension of Laumon 1-motives up to isogenies
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 3
SP - 719
EP - 726
AB - We prove that the category of Laumon 1-motives up to isogenies over a field of characteristic zero is of cohomological dimension $\le 1$. As a consequence this implies the same result for the category of formal Hodge structures of level $\le 1$ (over $\mathbb{Q}$).
LA - eng
KW - laumon 1-motives; cohomological dimension
UR - http://eudml.org/doc/116429
ER -
References
top- Schémas en groupes. I: Propriétés générales des schémas en groupes. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 151. Springer-Verlag, Berlin, 1970. Zbl0207.51401MR274458
- L. Barbieri-Viale and A. Bertapelle, Sharp de Rham realization. Advances in Mathematics Vol. 222 Issue 4, 2009. Zbl1216.14006MR2554937
- Luca Barbieri-Viale, Formal Hodge theory. Math. Res. Lett. 14 (3) (2007), 385–394. Zbl1131.14014MR2318642
- L. Barbieri-Viale and B. Kahn, On the derived category of 1-motives, I. arXiv:0706.1498v1, 2007.
- A. A. Beĭlinson, Notes on absolute Hodge cohomology. In Applications of algebraic -theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), volume 55 of Contemp. Math., pages 35–68. Amer. Math. Soc., Providence, RI, 1986. Zbl0621.14011MR862628
- Pierre Deligne, Théorie de Hodge III. Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5–77. Zbl0237.14003MR498552
- Michel Demazure, Lectures on -divisible groups. Lecture Notes in Mathematics, Vol. 302. Springer-Verlag, Berlin, 1972. Zbl0247.14010MR344261
- Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, Fundamental algebraic geometry. Volume 123 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005. Grothendieck’s FGA explained. Zbl1085.14001MR2222646
- Sergei I. Gelfand and Yuri I. Manin, Methods of homological algebra. Springer Monographs in Mathematics. Springer-Verlag, Berlin, second edition, 2003. Zbl1006.18001MR1950475
- Birger Iversen, Cohomology of sheaves. Universitext. Springer-Verlag, Berlin, 1986. MR842190
- Gerard Laumon, Transformation de Fourier généralisée. arXiv:alg-geom/9603004v1, 1996.
- J. S. Milne, Étale Cohomology. Princeton University Press, Princeton Mathematical Series, Vol. 33, 1980. Zbl0433.14012MR559531
- David Mumford, Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, No. 5. Published for the Tata Institute of Fundamental Research, Bombay, 1970. Zbl0223.14022MR282985
- Fabrice Orgogozo, Isomotifs de dimension inférieure ou égale à un. Manuscripta Math. 115 (3) (2004), 339–360. Zbl1092.14027MR2102056
- Jean-Pierre Serre, Linear representations of finite groups. Springer-Verlag, New York, 1977. Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42. Zbl0355.20006MR450380
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.