Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension
Frank Merle[1]; Hatem Zaag[2]
- [1] Université de Cergy Pontoise Département de mathématiques 2 avenue Adolphe Chauvin BP 222 95302 Cergy Pontoise cedex France
- [2] Université Paris 13, Institut Galilée Laboratoire Analyse, Géométrie et Applications CNRS UMR 7539 99 avenue J.B. Clément 93430 Villetaneuse France
Séminaire Équations aux dérivées partielles (2009-2010)
- Volume: 1996-1997, page 1-10
Access Full Article
topAbstract
topHow to cite
topMerle, Frank, and Zaag, Hatem. "Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension." Séminaire Équations aux dérivées partielles 1996-1997 (2009-2010): 1-10. <http://eudml.org/doc/116437>.
@article{Merle2009-2010,
abstract = {We consider the semilinear wave equation with power nonlinearity in one space dimension. We first show the existence of a blow-up solution with a characteristic point. Then, we consider an arbitrary blow-up solution $u(x,t)$, the graph $x\mapsto T(x)$ of its blow-up points and $\mathcal\{S\}\subset \mathbb\{R\} $ the set of all characteristic points and show that $\mathcal\{S\}$ is locally finite. Finally, given $x_0\in \mathcal\{S\}$, we show that in selfsimilar variables, the solution decomposes into a decoupled sum of (at least two) solitons, with alternate signs and that $T(x)$ forms a corner of angle $\frac\{\pi \}\{2\}$.},
affiliation = {Université de Cergy Pontoise Département de mathématiques 2 avenue Adolphe Chauvin BP 222 95302 Cergy Pontoise cedex France; Université Paris 13, Institut Galilée Laboratoire Analyse, Géométrie et Applications CNRS UMR 7539 99 avenue J.B. Clément 93430 Villetaneuse France},
author = {Merle, Frank, Zaag, Hatem},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-10},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension},
url = {http://eudml.org/doc/116437},
volume = {1996-1997},
year = {2009-2010},
}
TY - JOUR
AU - Merle, Frank
AU - Zaag, Hatem
TI - Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension
JO - Séminaire Équations aux dérivées partielles
PY - 2009-2010
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1996-1997
SP - 1
EP - 10
AB - We consider the semilinear wave equation with power nonlinearity in one space dimension. We first show the existence of a blow-up solution with a characteristic point. Then, we consider an arbitrary blow-up solution $u(x,t)$, the graph $x\mapsto T(x)$ of its blow-up points and $\mathcal{S}\subset \mathbb{R} $ the set of all characteristic points and show that $\mathcal{S}$ is locally finite. Finally, given $x_0\in \mathcal{S}$, we show that in selfsimilar variables, the solution decomposes into a decoupled sum of (at least two) solitons, with alternate signs and that $T(x)$ forms a corner of angle $\frac{\pi }{2}$.
LA - eng
UR - http://eudml.org/doc/116437
ER -
References
top- S. Alinhac. Blowup for nonlinear hyperbolic equations, volume 17 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc., Boston, MA, 1995. Zbl0820.35001MR1339762
- S. Alinhac. A numerical study of blowup for wave equations with gradient terms. 2006. preprint.
- C. Antonini and F. Merle. Optimal bounds on positive blow-up solutions for a semilinear wave equation. Internat. Math. Res. Notices, (21):1141–1167, 2001. Zbl0989.35090MR1861514
- L. A. Caffarelli and A. Friedman. Differentiability of the blow-up curve for one-dimensional nonlinear wave equations. Arch. Rational Mech. Anal., 91(1):83–98, 1985. Zbl0593.35055MR802832
- L. A. Caffarelli and A. Friedman. The blow-up boundary for nonlinear wave equations. Trans. Amer. Math. Soc., 297(1):223–241, 1986. Zbl0638.35053MR849476
- J. Ginibre, A. Soffer, and G. Velo. The global Cauchy problem for the critical nonlinear wave equation. J. Funct. Anal., 110(1):96–130, 1992. Zbl0813.35054MR1190421
- S. Kichenassamy and W. Littman. Blow-up surfaces for nonlinear wave equations. I. Comm. Partial Differential Equations, 18(3-4):431–452, 1993. Zbl0803.35093MR1214867
- S. Kichenassamy and W. Littman. Blow-up surfaces for nonlinear wave equations. II. Comm. Partial Differential Equations, 18(11):1869–1899, 1993. Zbl0803.35094MR1243529
- H. A. Levine. Instability and nonexistence of global solutions to nonlinear wave equations of the form . Trans. Amer. Math. Soc., 192:1–21, 1974. Zbl0288.35003MR344697
- Y. Martel and F. Merle. Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation. Ann. of Math. (2), 155(1):235–280, 2002. Zbl1005.35081MR1888800
- F. Merle and P. Raphael. On universality of blow-up profile for critical nonlinear Schrödinger equation. Invent. Math., 156(3):565–672, 2004. Zbl1067.35110MR2061329
- F. Merle and H. Zaag. Optimal estimates for blowup rate and behavior for nonlinear heat equations. Comm. Pure Appl. Math., 51(2):139–196, 1998. Zbl0899.35044MR1488298
- F. Merle and H. Zaag. A Liouville theorem for vector-valued nonlinear heat equations and applications. Math. Annalen, 316(1):103–137, 2000. Zbl0939.35086MR1735081
- F. Merle and H. Zaag. Determination of the blow-up rate for the semilinear wave equation. Amer. J. Math., 125:1147–1164, 2003. Zbl1052.35043MR2004432
- F. Merle and H. Zaag. Blow-up rate near the blow-up surface for semilinear wave equations. Internat. Math. Res. Notices, (19):1127–1156, 2005. Zbl1160.35478MR2147056
- F. Merle and H. Zaag. Determination of the blow-up rate for a critical semilinear wave equation. Math. Annalen, 331(2):395–416, 2005. Zbl1136.35055MR2115461
- F. Merle and H. Zaag. Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension. J. Funct. Anal., 253(1):43–121, 2007. Zbl1133.35070MR2362418
- F. Merle and H. Zaag. Openness of the set of non characteristic points and regularity of the blow-up curve for the d semilinear wave equation. Comm. Math. Phys., 282:55–86, 2008. Zbl1159.35046MR2415473
- F. Merle and H. Zaag. Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension. Amer. J. Math., 2010. to appear. Zbl1252.35204
- F. Merle and H. Zaag. Isolatedness of characteristic points for a semilinear wave equation in one space dimension. 2010. preprint. Zbl1270.35320
- N Nouaili. A simplified proof of a Liouville theorem for nonnegative solution of a subcritical semilinear heat equations. J. Dynam. Differential Equations, 2008. to appear. Zbl1194.35213MR2482011
- H. Zaag. Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation. Duke Math. J., 133(3):499–525, 2006. Zbl1096.35062MR2228461
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.