Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension

Frank Merle[1]; Hatem Zaag[2]

  • [1] Université de Cergy Pontoise Département de mathématiques 2 avenue Adolphe Chauvin BP 222 95302 Cergy Pontoise cedex France
  • [2] Université Paris 13, Institut Galilée Laboratoire Analyse, Géométrie et Applications CNRS UMR 7539 99 avenue J.B. Clément 93430 Villetaneuse France

Séminaire Équations aux dérivées partielles (2009-2010)

  • Volume: 1996-1997, page 1-10

Abstract

top
We consider the semilinear wave equation with power nonlinearity in one space dimension. We first show the existence of a blow-up solution with a characteristic point. Then, we consider an arbitrary blow-up solution u ( x , t ) , the graph x T ( x ) of its blow-up points and 𝒮 the set of all characteristic points and show that 𝒮 is locally finite. Finally, given x 0 𝒮 , we show that in selfsimilar variables, the solution decomposes into a decoupled sum of (at least two) solitons, with alternate signs and that T ( x ) forms a corner of angle π 2 .

How to cite

top

Merle, Frank, and Zaag, Hatem. "Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension." Séminaire Équations aux dérivées partielles 1996-1997 (2009-2010): 1-10. <http://eudml.org/doc/116437>.

@article{Merle2009-2010,
abstract = {We consider the semilinear wave equation with power nonlinearity in one space dimension. We first show the existence of a blow-up solution with a characteristic point. Then, we consider an arbitrary blow-up solution $u(x,t)$, the graph $x\mapsto T(x)$ of its blow-up points and $\mathcal\{S\}\subset \mathbb\{R\} $ the set of all characteristic points and show that $\mathcal\{S\}$ is locally finite. Finally, given $x_0\in \mathcal\{S\}$, we show that in selfsimilar variables, the solution decomposes into a decoupled sum of (at least two) solitons, with alternate signs and that $T(x)$ forms a corner of angle $\frac\{\pi \}\{2\}$.},
affiliation = {Université de Cergy Pontoise Département de mathématiques 2 avenue Adolphe Chauvin BP 222 95302 Cergy Pontoise cedex France; Université Paris 13, Institut Galilée Laboratoire Analyse, Géométrie et Applications CNRS UMR 7539 99 avenue J.B. Clément 93430 Villetaneuse France},
author = {Merle, Frank, Zaag, Hatem},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-10},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension},
url = {http://eudml.org/doc/116437},
volume = {1996-1997},
year = {2009-2010},
}

TY - JOUR
AU - Merle, Frank
AU - Zaag, Hatem
TI - Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension
JO - Séminaire Équations aux dérivées partielles
PY - 2009-2010
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1996-1997
SP - 1
EP - 10
AB - We consider the semilinear wave equation with power nonlinearity in one space dimension. We first show the existence of a blow-up solution with a characteristic point. Then, we consider an arbitrary blow-up solution $u(x,t)$, the graph $x\mapsto T(x)$ of its blow-up points and $\mathcal{S}\subset \mathbb{R} $ the set of all characteristic points and show that $\mathcal{S}$ is locally finite. Finally, given $x_0\in \mathcal{S}$, we show that in selfsimilar variables, the solution decomposes into a decoupled sum of (at least two) solitons, with alternate signs and that $T(x)$ forms a corner of angle $\frac{\pi }{2}$.
LA - eng
UR - http://eudml.org/doc/116437
ER -

References

top
  1. S. Alinhac. Blowup for nonlinear hyperbolic equations, volume 17 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc., Boston, MA, 1995. Zbl0820.35001MR1339762
  2. S. Alinhac. A numerical study of blowup for wave equations with gradient terms. 2006. preprint. 
  3. C. Antonini and F. Merle. Optimal bounds on positive blow-up solutions for a semilinear wave equation. Internat. Math. Res. Notices, (21):1141–1167, 2001. Zbl0989.35090MR1861514
  4. L. A. Caffarelli and A. Friedman. Differentiability of the blow-up curve for one-dimensional nonlinear wave equations. Arch. Rational Mech. Anal., 91(1):83–98, 1985. Zbl0593.35055MR802832
  5. L. A. Caffarelli and A. Friedman. The blow-up boundary for nonlinear wave equations. Trans. Amer. Math. Soc., 297(1):223–241, 1986. Zbl0638.35053MR849476
  6. J. Ginibre, A. Soffer, and G. Velo. The global Cauchy problem for the critical nonlinear wave equation. J. Funct. Anal., 110(1):96–130, 1992. Zbl0813.35054MR1190421
  7. S. Kichenassamy and W. Littman. Blow-up surfaces for nonlinear wave equations. I. Comm. Partial Differential Equations, 18(3-4):431–452, 1993. Zbl0803.35093MR1214867
  8. S. Kichenassamy and W. Littman. Blow-up surfaces for nonlinear wave equations. II. Comm. Partial Differential Equations, 18(11):1869–1899, 1993. Zbl0803.35094MR1243529
  9. H. A. Levine. Instability and nonexistence of global solutions to nonlinear wave equations of the form P u t t = - A u + ( u ) . Trans. Amer. Math. Soc., 192:1–21, 1974. Zbl0288.35003MR344697
  10. Y. Martel and F. Merle. Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation. Ann. of Math. (2), 155(1):235–280, 2002. Zbl1005.35081MR1888800
  11. F. Merle and P. Raphael. On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation. Invent. Math., 156(3):565–672, 2004. Zbl1067.35110MR2061329
  12. F. Merle and H. Zaag. Optimal estimates for blowup rate and behavior for nonlinear heat equations. Comm. Pure Appl. Math., 51(2):139–196, 1998. Zbl0899.35044MR1488298
  13. F. Merle and H. Zaag. A Liouville theorem for vector-valued nonlinear heat equations and applications. Math. Annalen, 316(1):103–137, 2000. Zbl0939.35086MR1735081
  14. F. Merle and H. Zaag. Determination of the blow-up rate for the semilinear wave equation. Amer. J. Math., 125:1147–1164, 2003. Zbl1052.35043MR2004432
  15. F. Merle and H. Zaag. Blow-up rate near the blow-up surface for semilinear wave equations. Internat. Math. Res. Notices, (19):1127–1156, 2005. Zbl1160.35478MR2147056
  16. F. Merle and H. Zaag. Determination of the blow-up rate for a critical semilinear wave equation. Math. Annalen, 331(2):395–416, 2005. Zbl1136.35055MR2115461
  17. F. Merle and H. Zaag. Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension. J. Funct. Anal., 253(1):43–121, 2007. Zbl1133.35070MR2362418
  18. F. Merle and H. Zaag. Openness of the set of non characteristic points and regularity of the blow-up curve for the 1 d semilinear wave equation. Comm. Math. Phys., 282:55–86, 2008. Zbl1159.35046MR2415473
  19. F. Merle and H. Zaag. Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension. Amer. J. Math., 2010. to appear. Zbl1252.35204
  20. F. Merle and H. Zaag. Isolatedness of characteristic points for a semilinear wave equation in one space dimension. 2010. preprint. Zbl1270.35320
  21. N Nouaili. A simplified proof of a Liouville theorem for nonnegative solution of a subcritical semilinear heat equations. J. Dynam. Differential Equations, 2008. to appear. Zbl1194.35213MR2482011
  22. H. Zaag. Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation. Duke Math. J., 133(3):499–525, 2006. Zbl1096.35062MR2228461

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.