Long-time stability of noncharacteristic viscous boundary layers

Toan Nguyen[1]; Kevin Zumbrun[2]

  • [1] Institut de Mathématiques de Jussieu Université Pierre et Marie Curie (Paris 6)
  • [2] Department of Mathematics Indiana University Bloomington IN 47402

Séminaire Équations aux dérivées partielles (2009-2010)

  • Volume: 2009-2010, page 1-15

Abstract

top
We report our results on long-time stability of multi–dimensional noncharacteristic boundary layers of a class of hyperbolic–parabolic systems including the compressible Navier–Stokes equations with inflow [outflow] boundary conditions, under the assumption of strong spectral, or uniform Evans, stability. Evans stability has been verified for small-amplitude layers by Guès, Métivier, Williams, and Zumbrun. For large–amplitudes, it may be checked numerically, as done in one–dimensional case for isentropic gas by Costanzino, Humpherys, Nguyen, and Zumbrun.

How to cite

top

Nguyen, Toan, and Zumbrun, Kevin. "Long-time stability of noncharacteristic viscous boundary layers." Séminaire Équations aux dérivées partielles 2009-2010 (2009-2010): 1-15. <http://eudml.org/doc/116446>.

@article{Nguyen2009-2010,
abstract = {We report our results on long-time stability of multi–dimensional noncharacteristic boundary layers of a class of hyperbolic–parabolic systems including the compressible Navier–Stokes equations with inflow [outflow] boundary conditions, under the assumption of strong spectral, or uniform Evans, stability. Evans stability has been verified for small-amplitude layers by Guès, Métivier, Williams, and Zumbrun. For large–amplitudes, it may be checked numerically, as done in one–dimensional case for isentropic gas by Costanzino, Humpherys, Nguyen, and Zumbrun.},
affiliation = {Institut de Mathématiques de Jussieu Université Pierre et Marie Curie (Paris 6); Department of Mathematics Indiana University Bloomington IN 47402},
author = {Nguyen, Toan, Zumbrun, Kevin},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {hyperbolic-parabolic systems; compressible Navier-Stokes equations; inflow [outflow] boundary conditions},
language = {eng},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Long-time stability of noncharacteristic viscous boundary layers},
url = {http://eudml.org/doc/116446},
volume = {2009-2010},
year = {2009-2010},
}

TY - JOUR
AU - Nguyen, Toan
AU - Zumbrun, Kevin
TI - Long-time stability of noncharacteristic viscous boundary layers
JO - Séminaire Équations aux dérivées partielles
PY - 2009-2010
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2009-2010
SP - 1
EP - 15
AB - We report our results on long-time stability of multi–dimensional noncharacteristic boundary layers of a class of hyperbolic–parabolic systems including the compressible Navier–Stokes equations with inflow [outflow] boundary conditions, under the assumption of strong spectral, or uniform Evans, stability. Evans stability has been verified for small-amplitude layers by Guès, Métivier, Williams, and Zumbrun. For large–amplitudes, it may be checked numerically, as done in one–dimensional case for isentropic gas by Costanzino, Humpherys, Nguyen, and Zumbrun.
LA - eng
KW - hyperbolic-parabolic systems; compressible Navier-Stokes equations; inflow [outflow] boundary conditions
UR - http://eudml.org/doc/116446
ER -

References

top
  1. B. Barker, J. Humpherys, K. Rudd, and K. Zumbrun. Stability of viscous shocks in isentropic gas dynamics, to appear, Comm. Math. Phys. Zbl1171.35071MR2403609
  2. Braslow, A.L., A history of suction-type laminar-flow control with emphasis on flight research, NSA History Division, Monographs in aerospace history, number 13 (1999). 
  3. T. J. Bridges, G. Derks, and G. Gottwald, Stability and instability of solitary waves of the fifth- order KdV equation: a numerical framework, Phys. D, 172(1-4):190–216, 2002. Zbl1047.37053MR1946769
  4. L. Q. Brin. Numerical testing of the stability of viscous shock waves, PhD thesis, Indiana University, Bloomington, 1998. MR2613047
  5. L. Q. Brin. Numerical testing of the stability of viscous shock waves, Math. Comp., 70(235):1071–1088, 2001. Zbl0980.65092MR1710652
  6. L. Q. Brin and K. Zumbrun. Analytically varying eigenvectors and the stability of viscous shock waves, Mat. Contemp., 22:19–32, 2002, Seventh Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 2001). Zbl1044.35057MR1965784
  7. N. Costanzino, J. Humpherys, T. Nguyen, and K. Zumbrun, Spectral stability of noncharacteristic boundary layers of isentropic Navier–Stokes equations, to appear, Arch. Ration. Mech. Anal. Zbl1169.76051MR2505363
  8. Grenier, E. and Rousset, F., Stability of one dimensional boundary layers by using Green’s functions, Comm. Pure Appl. Math. 54 (2001), 1343-1385. Zbl1026.35015MR1846801
  9. O. Guès, G. Métivier, M. Williams, and K. Zumbrun. Multidimensional viscous shocks I: degenerate symmetrizers and long time stability, J. Amer. Math. Soc. 18 (2005), no. 1, 61–120. Zbl1058.35163MR2114817
  10. O. Guès, G. Métivier, M. Williams, and K. Zumbrun. Existence and stability of noncharacteristic hyperbolic-parabolic boundary-layers. Preprint, 2008. Zbl1217.35136
  11. O. Guès, G. Métivier, M. Williams, and K. Zumbrun. Viscous boundary value problems for symmetric systems with variable multiplicities J. Differential Equations 244 (2008) 309–387. Zbl1138.35052MR2376200
  12. P. Howard and K. Zumbrun, Stability of undercompressive viscous shock waves, in press, J. Differential Equations 225 (2006), no. 1, 308–360. Zbl1102.35069MR2228699
  13. J. Humpherys, O. Lafitte, and K. Zumbrun. Stability of viscous shock profiles in the high Mach number limit, (Preprint, 2007). Zbl1195.35244
  14. Humpherys, J., Lyng, G., and Zumbrun, K., Spectral stability of ideal-gas shock layers, Preprint (2007). Zbl05640848MR2563632
  15. Humpherys, J., Lyng, G., and Zumbrun, K., Multidimensional spectral stability of large-amplitude Navier-Stokes shocks, in preparation. Zbl05640848
  16. D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J. 44 (1995), no. 2, 603–676. Zbl0842.35076MR1355414
  17. D. Hoff and K. Zumbrun, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. Angew. Math. Phys. 48 (1997), no. 4, 597–614. Zbl0882.76074MR1471469
  18. J. Humpherys and K. Zumbrun. An efficient shooting algorithm for evans function calculations in large systems, Physica D, 220(2):116–126, 2006. Zbl1101.65082MR2253406
  19. Y. Kagei and S. Kawashima Stability of planar stationary solutions to the compressible Navier-Stokes equations in the half space, Comm. Math. Phys. 266 (2006), 401-430. Zbl1117.35062MR2238883
  20. S. Kawashima, S. Nishibata, and P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space, Comm. Math. Phys. 240 (2003), no. 3, 483–500. Zbl1038.35057MR2005853
  21. C. Mascia and K. Zumbrun. Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Ration. Mech. Anal., 169(3):177–263, 2003. Zbl1035.35074MR2004135
  22. C. Mascia and K. Zumbrun. Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems. Arch. Ration. Mech. Anal., 172(1):93–131, 2004. Zbl1058.35160MR2048568
  23. Matsumura, A. and Nishihara, K., Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas, Comm. Math. Phys., 222 (2001), no. 3, 449–474. Zbl1018.76038MR1888084
  24. Métivier, G. and Zumbrun, K., Viscous Boundary Layers for Noncharacteristic Nonlinear Hyperbolic Problems, Memoirs AMS, 826 (2005). Zbl1074.35066
  25. T. Nguyen, On asymptotic stability of noncharacteristic viscous boundary layers, SIAM J. Math. Analysis, to appear. Zbl1211.35049MR2644918
  26. T. Nguyen and K. Zumbrun, Long-time stability of large-amplitude noncharacteristic boundary layers for hyperbolic-parabolic systems, J. Maths. Pures et Appliquées, to appear. Zbl1188.35021MR2565843
  27. T. Nguyen and K. Zumbrun, Long-time stability of multi-dimensional noncharacteristic viscous boundary layers, Preprint, 2008 Zbl05789930MR2672797
  28. M. Raoofi and K. Zumbrun, Stability of undercompressive viscous shock profiles of hyperbolic-parabolic systems Preprint, 2007. Zbl1170.35019MR2488696
  29. H. Schlichting, Boundary layer theory, Translated by J. Kestin. 4th ed. McGraw-Hill Series in Mechanical Engineering. McGraw-Hill Book Co., Inc., New York, 1960. Zbl0096.20105MR122222
  30. Serre, D. and Zumbrun, K., Boundary layer stability in real vanishing-viscosity limit, Comm. Math. Phys. 221 (2001), no. 2, 267–292. Zbl0988.35028MR1845324
  31. S. Yarahmadian and K. Zumbrun, Pointwise Green function bounds and long-time stability of large-amplitude noncharacteristic boundary layers, Preprint (2008). Zbl1180.35145MR2628016
  32. K. Zumbrun. Multidimensional stability of planar viscous shock waves. In Advances in the theory of shock waves, volume 47 of Progr. Nonlinear Differential Equations Appl., pages 307–516. Birkhäuser Boston, Boston, MA, 2001. Zbl0989.35089MR1842778
  33. K. Zumbrun. Stability of large-amplitude shock waves of compressible Navier-Stokes equations. In Handbook of mathematical fluid dynamics. Vol. III, pages 311–533. North-Holland, Amsterdam, 2004. With an appendix by Helge Kristian Jenssen and Gregory Lyng. Zbl1222.35156MR2099037
  34. K. Zumbrun. Planar stability criteria for viscous shock waves of systems with real viscosity. In Hyperbolic systems of balance laws, volume 1911 of Lecture Notes in Math., pages 229–326. Springer, Berlin, 2007. Zbl1138.35061MR2348937

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.