Canonical metrics on some domains of
Fabio Zuddas[1]
- [1] Università di Parma Dipartimento di Matematica Viale G. P. Usberti 53/A 43124 Parma (Italie)
Séminaire de théorie spectrale et géométrie (2008-2009)
- Volume: 27, page 143-156
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topZuddas, Fabio. "Canonical metrics on some domains of $\mathbb{C}^n$." Séminaire de théorie spectrale et géométrie 27 (2008-2009): 143-156. <http://eudml.org/doc/116455>.
@article{Zuddas2008-2009,
abstract = {The study of the existence and uniqueness of a preferred Kähler metric on a given complex manifold $M$ is a very important area of research. In this talk we recall the main results and open questions for the most important canonical metrics (Einstein, constant scalar curvature, extremal, Kähler-Ricci solitons) in the compact and the non-compact case, then we consider a particular class of complex domains $D$ in $\{\mathbb\{C\}\}^n$, the so-called Hartogs domains, which can be equipped with a natural Kaehler metric $g$. We show that if $g$ is a Kähler-Einstein, constant scalar curvature, extremal or a soliton metric then $(D, g)$ is holomorphically isometric to an open subset of the $n$-dimensional complex hyperbolic space. If $D$ is bounded, we also show the same assertion under the assumption that $g$ is a scalar multiple of the Bergman metric.The results we present are proved in papers joint with A. Loi and A. J. Di Scala ([11], [20]).},
affiliation = {Università di Parma Dipartimento di Matematica Viale G. P. Usberti 53/A 43124 Parma (Italie)},
author = {Zuddas, Fabio},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {preferred Kähler metric; Kähler-Einstein metric; Kähler metric with constant scalar curvature; Kähler-Ricci solitons; Bergman metric; Hartogs domains},
language = {eng},
pages = {143-156},
publisher = {Institut Fourier},
title = {Canonical metrics on some domains of $\mathbb\{C\}^n$},
url = {http://eudml.org/doc/116455},
volume = {27},
year = {2008-2009},
}
TY - JOUR
AU - Zuddas, Fabio
TI - Canonical metrics on some domains of $\mathbb{C}^n$
JO - Séminaire de théorie spectrale et géométrie
PY - 2008-2009
PB - Institut Fourier
VL - 27
SP - 143
EP - 156
AB - The study of the existence and uniqueness of a preferred Kähler metric on a given complex manifold $M$ is a very important area of research. In this talk we recall the main results and open questions for the most important canonical metrics (Einstein, constant scalar curvature, extremal, Kähler-Ricci solitons) in the compact and the non-compact case, then we consider a particular class of complex domains $D$ in ${\mathbb{C}}^n$, the so-called Hartogs domains, which can be equipped with a natural Kaehler metric $g$. We show that if $g$ is a Kähler-Einstein, constant scalar curvature, extremal or a soliton metric then $(D, g)$ is holomorphically isometric to an open subset of the $n$-dimensional complex hyperbolic space. If $D$ is bounded, we also show the same assertion under the assumption that $g$ is a scalar multiple of the Bergman metric.The results we present are proved in papers joint with A. Loi and A. J. Di Scala ([11], [20]).
LA - eng
KW - preferred Kähler metric; Kähler-Einstein metric; Kähler metric with constant scalar curvature; Kähler-Ricci solitons; Bergman metric; Hartogs domains
UR - http://eudml.org/doc/116455
ER -
References
top- Shigetoshi Bando, Toshiki Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, Algebraic geometry, Sendai, 1985 10 (1987), 11-40, North-Holland, Amsterdam Zbl0641.53065MR946233
- Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry 102 (1982), 259-290, Princeton Univ. Press, Princeton, N.J. Zbl0487.53057MR645743
- Huai Dong Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (1985), 359-372 Zbl0574.53042MR799272
- Huai-Dong Cao, Meng Zhu, A note on compact Kähler-Ricci flow with positive bisectional curvature, Math. Res. Lett. 16 (2009), 935-939 Zbl1193.53141MR2576682
- Shu-Cheng Chang, On the existence of nontrivial extremal metrics on complete noncompact surfaces, Math. Ann. 324 (2002), 465-490 Zbl1028.53041MR1938455
- Shu-Cheng Chang, Chin-Tung Wu, On the existence of extremal metrics on complete noncompact 3-manifolds, Indiana Univ. Math. J. 53 (2004), 243-268 Zbl1067.53023MR2048993
- Albert Chau, Convergence of the Kähler-Ricci flow on noncompact Kähler manifolds, J. Differential Geom. 66 (2004), 211-232 Zbl1082.53070MR2106124
- Xiuxiong Chen, Gang Tian, Uniqueness of extremal Kähler metrics, C. R. Math. Acad. Sci. Paris 340 (2005), 287-290 Zbl1069.32017MR2121892
- Shiu Yuen Cheng, Shing Tung Yau, On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation, Comm. Pure Appl. Math. 33 (1980), 507-544 Zbl0506.53031MR575736
- Fabrizio Cuccu, Andrea Loi, Global symplectic coordinates on complex domains, J. Geom. Phys. 56 (2006), 247-259 Zbl1085.53070MR2173895
- Antonio J. Di Scala, Andrea Loi, Fabio Zuddas, Riemannian geometry of Hartogs domains, Internat. J. Math. 20 (2009), 139-148 Zbl1178.32017MR2493356
- Miroslav Engliš, Berezin quantization and reproducing kernels on complex domains, Trans. Amer. Math. Soc. 348 (1996), 411-479 Zbl0842.46053MR1340173
- Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65 Zbl0289.32012MR350069
- Mikhail Feldman, Tom Ilmanen, Dan Knopf, Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons, J. Differential Geom. 65 (2003), 169-209 Zbl1069.53036MR2058261
- Paul Gauduchon, Calabi’s extremal Kähler metrics
- A. V. Isaev, S. G. Krantz, Domains with non-compact automorphism group: a survey, Adv. Math. 146 (1999), 1-38 Zbl1040.32019MR1706680
- Shoshichi Kobayashi, Katsumi Nomizu, Foundations of differential geometry. Vol. II, (1996), John Wiley & Sons Inc., New York Zbl0091.34802MR1393941
- Claude LeBrun, Complete Ricci-flat Kähler metrics on need not be flat, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) 52 (1991), 297-304, Amer. Math. Soc., Providence, RI Zbl0739.53053MR1128554
- Andrea Loi, Regular quantizations of Kähler manifolds and constant scalar curvature metrics, J. Geom. Phys. 53 (2005), 354-364 Zbl1080.53067MR2108536
- Andrea Loi, Fabio Zuddas, Canonical metrics on Hartogs domains Zbl05770024
- Andrea Loi, Fabio Zuddas, Symplectic maps of complex domains into complex space forms, Journal of Geometry and Physics 58 (2008), 888-899 Zbl1154.53050MR2426246
- Toshiki Mabuchi, Uniqueness of extremal Kähler metrics for an integral Kähler class, Internat. J. Math. 15 (2004), 531-546 Zbl1058.32017MR2078878
- Gang Tian, Canonical metrics in Kähler geometry, (2000), Birkhäuser Verlag, Basel Zbl0978.53002MR1787650
- Gang Tian, Xiaohua Zhu, A new holomorphic invariant and uniqueness of Kähler-Ricci solitons, Comment. Math. Helv. 77 (2002), 297-325 Zbl1036.53053MR1915043
- Gang Tian, Xiaohua Zhu, Convergence of Kähler-Ricci flow, J. Amer. Math. Soc. 20 (2007), 675-699 (electronic) Zbl1185.53078MR2291916
- An Wang, Weiping Yin, Liyou Zhang, Guy Roos, The Kähler-Einstein metric for some Hartogs domains over symmetric domains, Sci. China Ser. A 49 (2006), 1175-1210 Zbl1114.32011MR2284205
- Xu-Jia Wang, Xiaohua Zhu, Kähler-Ricci solitons on toric manifolds with positive first Chern class, Adv. Math. 188 (2004), 87-103 Zbl1086.53067MR2084775
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), 339-411 Zbl0369.53059MR480350
- Fangyang Zheng, Complex differential geometry, 18 (2000), American Mathematical Society, Providence, RI Zbl0984.53002MR1777835
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.