Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen

Mahan Mj[1]

  • [1] RKM Vivekananda University School of Mathematical Sciences P.O. Belur Math Dt. Howrah, WB-711202 (India)

Séminaire de théorie spectrale et géométrie (2009-2010)

  • Volume: 28, page 63-107
  • ISSN: 1624-5458

Abstract

top
The notion of i-bounded geometry generalises simultaneously bounded geometry and the geometry of punctured torus Kleinian groups. We show that the limit set of a surface Kleinian group of i-bounded geometry is locally connected by constructing a natural Cannon-Thurston map.

How to cite

top

Mj, Mahan. "Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen." Séminaire de théorie spectrale et géométrie 28 (2009-2010): 63-107. <http://eudml.org/doc/116466>.

@article{Mj2009-2010,
abstract = {The notion of i-bounded geometry generalises simultaneously bounded geometry and the geometry of punctured torus Kleinian groups. We show that the limit set of a surface Kleinian group of i-bounded geometry is locally connected by constructing a natural Cannon-Thurston map.},
affiliation = {RKM Vivekananda University School of Mathematical Sciences P.O. Belur Math Dt. Howrah, WB-711202 (India)},
author = {Mj, Mahan},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Cannon-Thurston map; Kleinian group; hyperbolic 3-manifold; limit set},
language = {eng},
pages = {63-107},
publisher = {Institut Fourier},
title = {Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen},
url = {http://eudml.org/doc/116466},
volume = {28},
year = {2009-2010},
}

TY - JOUR
AU - Mj, Mahan
TI - Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen
JO - Séminaire de théorie spectrale et géométrie
PY - 2009-2010
PB - Institut Fourier
VL - 28
SP - 63
EP - 107
AB - The notion of i-bounded geometry generalises simultaneously bounded geometry and the geometry of punctured torus Kleinian groups. We show that the limit set of a surface Kleinian group of i-bounded geometry is locally connected by constructing a natural Cannon-Thurston map.
LA - eng
KW - Cannon-Thurston map; Kleinian group; hyperbolic 3-manifold; limit set
UR - http://eudml.org/doc/116466
ER -

References

top
  1. Brian H. Bowditch, Relatively hyperbolic groups Zbl0906.20022
  2. Brian H. Bowditch, The Cannon-Thurston map for punctured-surface groups, Math. Z. 255 (2007), 35-76 Zbl1138.57020MR2262721
  3. James W. Cannon, William P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355 Zbl1136.57009MR2326947
  4. M. Coornaert, T. Delzant, A. Papadopoulos, Géométrie et théorie des groupes, 1441 (1990), Springer-Verlag, Berlin Zbl0727.20018MR1075994
  5. Shubhabrata Das, Mahan Mj, Addendum to Ending Laminations and Cannon-Thurston Maps: Parabolics Zbl1297.57040
  6. Shubhabrata Das, Mahan Mj, Semiconjugacies Between Relatively Hyperbolic Boundaries 
  7. B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), 810-840 Zbl0985.20027MR1650094
  8. Étienne Ghys, Pierre de la Harpe, La propriété de Markov pour les groupes hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) 83 (1990), 165-187, Birkhäuser Boston, Boston, MA 
  9. M. Gromov, Hyperbolic groups, Essays in group theory 8 (1987), 75-263, Springer, New York Zbl0634.20015MR919829
  10. M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) 182 (1993), 1-295, Cambridge Univ. Press, Cambridge Zbl0841.20039MR1253544
  11. John G. Hocking, Gail S. Young, Topology, (1961), Addison-Wesley Publishing Co., Inc., Reading, Mass.-London Zbl0718.55001MR125557
  12. Erica Klarreich, Semiconjugacies between Kleinian group actions on the Riemann sphere, Amer. J. Math. 121 (1999), 1031-1078 Zbl1011.30035MR1713300
  13. Curtis T. McMullen, Local connectivity, Kleinian groups and geodesics on the blowup of the torus, Invent. Math. 146 (2001), 35-91 Zbl1061.37025MR1859018
  14. Yair Minsky, The classification of Kleinian surface groups. I. Models and bounds, Ann. of Math. (2) 171 (2010), 1-107 Zbl1193.30063MR2630036
  15. Yair N. Minsky, On rigidity, limit sets, and end invariants of hyperbolic 3 -manifolds, J. Amer. Math. Soc. 7 (1994), 539-588 Zbl0808.30027MR1257060
  16. Yair N. Minsky, The classification of punctured-torus groups, Ann. of Math. (2) 149 (1999), 559-626 Zbl0939.30034MR1689341
  17. Mahan Mitra, Cannon-Thurston maps for hyperbolic group extensions, Topology 37 (1998), 527-538 Zbl0907.20038MR1604882
  18. Mahan Mitra, Cannon-Thurston maps for trees of hyperbolic metric spaces, J. Differential Geom. 48 (1998), 135-164 Zbl0906.20023MR1622603
  19. Mahan Mj, Cannon-Thurston Maps for Kleinian Groups Zbl1301.57013MR2667569
  20. Mahan Mj, Cannon-Thurston Maps for Surface Groups Zbl1301.57013MR2667569
  21. Mahan Mj, Cannon-Thurston Maps for Surface Groups Zbl1301.57013MR2667569
  22. Mahan Mj, Ending Laminations and Cannon-Thurston Maps Zbl1297.57040MR2667569
  23. Mahan Mj, Cannon-Thurston maps for pared manifolds of bounded geometry, Geom. Topol. 13 (2009), 189-245 Zbl1166.57009MR2469517
  24. Mahan Mj, Cannon-Thurston maps and bounded geometry, Teichmüller theory and moduli problem 10 (2010), 489-511, Ramanujan Math. Soc., Mysore Zbl1204.57014MR2667569
  25. William P. Thurston, Three-dimensional geometry and topology. Vol. 1, 35 (1997), Princeton University Press, Princeton, NJ Zbl0873.57001MR1435975

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.