Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen
Mahan Mj[1]
- [1] RKM Vivekananda University School of Mathematical Sciences P.O. Belur Math Dt. Howrah, WB-711202 (India)
Séminaire de théorie spectrale et géométrie (2009-2010)
- Volume: 28, page 63-107
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topMj, Mahan. "Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen." Séminaire de théorie spectrale et géométrie 28 (2009-2010): 63-107. <http://eudml.org/doc/116466>.
@article{Mj2009-2010,
abstract = {The notion of i-bounded geometry generalises simultaneously bounded geometry and the geometry of punctured torus Kleinian groups. We show that the limit set of a surface Kleinian group of i-bounded geometry is locally connected by constructing a natural Cannon-Thurston map.},
affiliation = {RKM Vivekananda University School of Mathematical Sciences P.O. Belur Math Dt. Howrah, WB-711202 (India)},
author = {Mj, Mahan},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Cannon-Thurston map; Kleinian group; hyperbolic 3-manifold; limit set},
language = {eng},
pages = {63-107},
publisher = {Institut Fourier},
title = {Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen},
url = {http://eudml.org/doc/116466},
volume = {28},
year = {2009-2010},
}
TY - JOUR
AU - Mj, Mahan
TI - Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen
JO - Séminaire de théorie spectrale et géométrie
PY - 2009-2010
PB - Institut Fourier
VL - 28
SP - 63
EP - 107
AB - The notion of i-bounded geometry generalises simultaneously bounded geometry and the geometry of punctured torus Kleinian groups. We show that the limit set of a surface Kleinian group of i-bounded geometry is locally connected by constructing a natural Cannon-Thurston map.
LA - eng
KW - Cannon-Thurston map; Kleinian group; hyperbolic 3-manifold; limit set
UR - http://eudml.org/doc/116466
ER -
References
top- Brian H. Bowditch, Relatively hyperbolic groups Zbl0906.20022
- Brian H. Bowditch, The Cannon-Thurston map for punctured-surface groups, Math. Z. 255 (2007), 35-76 Zbl1138.57020MR2262721
- James W. Cannon, William P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355 Zbl1136.57009MR2326947
- M. Coornaert, T. Delzant, A. Papadopoulos, Géométrie et théorie des groupes, 1441 (1990), Springer-Verlag, Berlin Zbl0727.20018MR1075994
- Shubhabrata Das, Mahan Mj, Addendum to Ending Laminations and Cannon-Thurston Maps: Parabolics Zbl1297.57040
- Shubhabrata Das, Mahan Mj, Semiconjugacies Between Relatively Hyperbolic Boundaries
- B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), 810-840 Zbl0985.20027MR1650094
- Étienne Ghys, Pierre de la Harpe, La propriété de Markov pour les groupes hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) 83 (1990), 165-187, Birkhäuser Boston, Boston, MA
- M. Gromov, Hyperbolic groups, Essays in group theory 8 (1987), 75-263, Springer, New York Zbl0634.20015MR919829
- M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) 182 (1993), 1-295, Cambridge Univ. Press, Cambridge Zbl0841.20039MR1253544
- John G. Hocking, Gail S. Young, Topology, (1961), Addison-Wesley Publishing Co., Inc., Reading, Mass.-London Zbl0718.55001MR125557
- Erica Klarreich, Semiconjugacies between Kleinian group actions on the Riemann sphere, Amer. J. Math. 121 (1999), 1031-1078 Zbl1011.30035MR1713300
- Curtis T. McMullen, Local connectivity, Kleinian groups and geodesics on the blowup of the torus, Invent. Math. 146 (2001), 35-91 Zbl1061.37025MR1859018
- Yair Minsky, The classification of Kleinian surface groups. I. Models and bounds, Ann. of Math. (2) 171 (2010), 1-107 Zbl1193.30063MR2630036
- Yair N. Minsky, On rigidity, limit sets, and end invariants of hyperbolic -manifolds, J. Amer. Math. Soc. 7 (1994), 539-588 Zbl0808.30027MR1257060
- Yair N. Minsky, The classification of punctured-torus groups, Ann. of Math. (2) 149 (1999), 559-626 Zbl0939.30034MR1689341
- Mahan Mitra, Cannon-Thurston maps for hyperbolic group extensions, Topology 37 (1998), 527-538 Zbl0907.20038MR1604882
- Mahan Mitra, Cannon-Thurston maps for trees of hyperbolic metric spaces, J. Differential Geom. 48 (1998), 135-164 Zbl0906.20023MR1622603
- Mahan Mj, Cannon-Thurston Maps for Kleinian Groups Zbl1301.57013MR2667569
- Mahan Mj, Cannon-Thurston Maps for Surface Groups Zbl1301.57013MR2667569
- Mahan Mj, Cannon-Thurston Maps for Surface Groups Zbl1301.57013MR2667569
- Mahan Mj, Ending Laminations and Cannon-Thurston Maps Zbl1297.57040MR2667569
- Mahan Mj, Cannon-Thurston maps for pared manifolds of bounded geometry, Geom. Topol. 13 (2009), 189-245 Zbl1166.57009MR2469517
- Mahan Mj, Cannon-Thurston maps and bounded geometry, Teichmüller theory and moduli problem 10 (2010), 489-511, Ramanujan Math. Soc., Mysore Zbl1204.57014MR2667569
- William P. Thurston, Three-dimensional geometry and topology. Vol. 1, 35 (1997), Princeton University Press, Princeton, NJ Zbl0873.57001MR1435975
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.