On fourth-order boundary-value problems

Myelkebir Aitalioubrahim

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2010)

  • Volume: 49, Issue: 1, page 5-16
  • ISSN: 0231-9721

Abstract

top
We show the existence of solutions to a boundary-value problem for fourth-order differential inclusions in a Banach space, under Lipschitz’s contractive conditions, Carathéodory conditions and lower semicontinuity conditions.

How to cite

top

Aitalioubrahim, Myelkebir. "On fourth-order boundary-value problems." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 49.1 (2010): 5-16. <http://eudml.org/doc/116472>.

@article{Aitalioubrahim2010,
abstract = {We show the existence of solutions to a boundary-value problem for fourth-order differential inclusions in a Banach space, under Lipschitz’s contractive conditions, Carathéodory conditions and lower semicontinuity conditions.},
author = {Aitalioubrahim, Myelkebir},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Boundary-value problems; set-valued map; fixed point; selection; differential inclusion; boundary value problem; fixed point; existence of solutions; set-valued; selection},
language = {eng},
number = {1},
pages = {5-16},
publisher = {Palacký University Olomouc},
title = {On fourth-order boundary-value problems},
url = {http://eudml.org/doc/116472},
volume = {49},
year = {2010},
}

TY - JOUR
AU - Aitalioubrahim, Myelkebir
TI - On fourth-order boundary-value problems
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2010
PB - Palacký University Olomouc
VL - 49
IS - 1
SP - 5
EP - 16
AB - We show the existence of solutions to a boundary-value problem for fourth-order differential inclusions in a Banach space, under Lipschitz’s contractive conditions, Carathéodory conditions and lower semicontinuity conditions.
LA - eng
KW - Boundary-value problems; set-valued map; fixed point; selection; differential inclusion; boundary value problem; fixed point; existence of solutions; set-valued; selection
UR - http://eudml.org/doc/116472
ER -

References

top
  1. Aftabizadeh, A. R., 10.1016/S0022-247X(86)80006-3, J. Math. Anal. Appl. 116 (1986), 415–426. (1986) Zbl0634.34009MR0842808DOI10.1016/S0022-247X(86)80006-3
  2. Bressan, A., Colombo, G., Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69–86. (1988) Zbl0677.54013MR0947921
  3. Castaing, C., Valadier, M., 10.1007/BFb0087688, Lecture Notes in Mathematics 580 Spriger, New York–Berlin–Heidelberg, 1977. (1977) Zbl0346.46038MR0467310DOI10.1007/BFb0087688
  4. Covitz, H., Nadler, S. B. Jr., 10.1007/BF02771543, Israel J. Math. 8 (1970), 5–11. (1970) MR0263062DOI10.1007/BF02771543
  5. Frigon, M., Granas, A., Théorèmes d’existence pour des inclusions différentielles sans convexité, C. R. Acad. Sci. Paris Ser. I Math. 310 (1990), 819–822. (1990) MR1058503
  6. Hu, S., Papageorgiou, N. S., Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer, Dordrecht, 1997. (1997) MR1485775
  7. Lasota, A., Opial, Z., An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys. 13 (1965), 781–786. (1965) Zbl0151.10703MR0196178
  8. Liu, Y., Multiple positive solutions to fourth-order singular boundary-value problems in abstract spaces, Electron. J. Differential Equations 120 (2004), 1–13. (2004) Zbl1076.34068MR2108891
  9. Martelli, M., A Rothe’s type theorem for noncompact acyclic-valued map, Boll. Un. Mat. Ital. 11 (1975), 70–76. (1975) MR0394752
  10. Smart, D. R., Fixed Point Theorems, Cambridge Univ. Press, Cambridge, 1974. (1974) Zbl0297.47042MR0467717
  11. Yang, Y., 10.1090/S0002-9939-1988-0958062-3, Proc. Amer. Math. Soc. 104 (1988), 175–180. (1988) Zbl0671.34016MR0958062DOI10.1090/S0002-9939-1988-0958062-3
  12. Zhu, Q., 10.1016/0022-0396(91)90011-W, J. Differential Equations 93, 2 (1991), 213–237. (1991) MR1125218DOI10.1016/0022-0396(91)90011-W

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.