Fischer decompositions in Euclidean and Hermitean Clifford analysis

Freddy Brackx; Hennie de Schepper; Vladimír Souček

Archivum Mathematicum (2010)

  • Volume: 046, Issue: 5, page 301-321
  • ISSN: 0044-8753

Abstract

top
Euclidean Clifford analysis is a higher dimensional function theory studying so–called monogenic functions, i.e. null solutions of the rotation invariant, vector valued, first order Dirac operator ̲ . In the more recent branch Hermitean Clifford analysis, this rotational invariance has been broken by introducing a complex structure J on Euclidean space and a corresponding second Dirac operator ̲ J , leading to the system of equations ̲ f = 0 = ̲ J f expressing so-called Hermitean monogenicity. The invariance of this system is reduced to the unitary group U( n ). In this paper we decompose the spaces of homogeneous monogenic polynomials into U( n )-irrucibles involving homogeneous Hermitean monogenic polynomials and we carry out a dimensional analysis of those spaces. Meanwhile an overview is given of so-called Fischer decompositions in Euclidean and Hermitean Clifford analysis.

How to cite

top

Brackx, Freddy, de Schepper, Hennie, and Souček, Vladimír. "Fischer decompositions in Euclidean and Hermitean Clifford analysis." Archivum Mathematicum 046.5 (2010): 301-321. <http://eudml.org/doc/116494>.

@article{Brackx2010,
abstract = {Euclidean Clifford analysis is a higher dimensional function theory studying so–called monogenic functions, i.e. null solutions of the rotation invariant, vector valued, first order Dirac operator $\underline\{\partial \}$. In the more recent branch Hermitean Clifford analysis, this rotational invariance has been broken by introducing a complex structure $J$ on Euclidean space and a corresponding second Dirac operator $\underline\{\partial \}_J$, leading to the system of equations $\underline\{\partial \} f = 0 = \underline\{\partial \}_J f$ expressing so-called Hermitean monogenicity. The invariance of this system is reduced to the unitary group U($n$). In this paper we decompose the spaces of homogeneous monogenic polynomials into U($n$)-irrucibles involving homogeneous Hermitean monogenic polynomials and we carry out a dimensional analysis of those spaces. Meanwhile an overview is given of so-called Fischer decompositions in Euclidean and Hermitean Clifford analysis.},
author = {Brackx, Freddy, de Schepper, Hennie, Souček, Vladimír},
journal = {Archivum Mathematicum},
keywords = {Fischer decomposition; Clifford analysis; Fischer decomposition; Clifford analysis},
language = {eng},
number = {5},
pages = {301-321},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Fischer decompositions in Euclidean and Hermitean Clifford analysis},
url = {http://eudml.org/doc/116494},
volume = {046},
year = {2010},
}

TY - JOUR
AU - Brackx, Freddy
AU - de Schepper, Hennie
AU - Souček, Vladimír
TI - Fischer decompositions in Euclidean and Hermitean Clifford analysis
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 5
SP - 301
EP - 321
AB - Euclidean Clifford analysis is a higher dimensional function theory studying so–called monogenic functions, i.e. null solutions of the rotation invariant, vector valued, first order Dirac operator $\underline{\partial }$. In the more recent branch Hermitean Clifford analysis, this rotational invariance has been broken by introducing a complex structure $J$ on Euclidean space and a corresponding second Dirac operator $\underline{\partial }_J$, leading to the system of equations $\underline{\partial } f = 0 = \underline{\partial }_J f$ expressing so-called Hermitean monogenicity. The invariance of this system is reduced to the unitary group U($n$). In this paper we decompose the spaces of homogeneous monogenic polynomials into U($n$)-irrucibles involving homogeneous Hermitean monogenic polynomials and we carry out a dimensional analysis of those spaces. Meanwhile an overview is given of so-called Fischer decompositions in Euclidean and Hermitean Clifford analysis.
LA - eng
KW - Fischer decomposition; Clifford analysis; Fischer decomposition; Clifford analysis
UR - http://eudml.org/doc/116494
ER -

References

top
  1. Brackx, F., Bureš, J., Schepper, H. De, Eelbode, D., Sommen, F., Souček, V., 10.1007/s11785-007-0010-5, Compl. Anal. Oper. Theory 1 (3) (2007), 341–365. (2007) MR2336028DOI10.1007/s11785-007-0010-5
  2. Brackx, F., Bureš, J., Schepper, H. De, Eelbode, D., Sommen, F., Souček, V., Fundaments of Hermitean Clifford analysis – Part II: Splitting of h –monogenic equations, Complex Var. Elliptic Equ. 52 (10–11) (2007), 1063–1079. (2007) MR2374972
  3. Brackx, F., Delanghe, R., Sommen, F., Clifford Analysis, Pitman Publishers, 1982. (1982) Zbl0529.30001MR0697564
  4. Brackx, F., Delanghe, R., Sommen, F., Differential forms and / or multi–vector functions, Cubo 7 (2) (2005), 139–169. (2005) Zbl1105.58002MR2186030
  5. Brackx, F., Knock, B. De, Schepper, H. De, 10.1016/j.jmaa.2008.03.043, J. Math. Anal. Appl. 344 (2) (2008), 1068–1078. (2008) Zbl1148.44004MR2426334DOI10.1016/j.jmaa.2008.03.043
  6. Brackx, F., Knock, B. De, Schepper, H. De, Sommen, F., 10.1007/s00574-009-0018-8, Bull. Braz. Math. Soc. (N.S.) 40 (3) (2009), 395–416. (2009) Zbl1182.30081MR2540516DOI10.1007/s00574-009-0018-8
  7. Brackx, F., Schepper, H. De, Eelbode, D., Souček, V., 10.4171/RMI/606, Rev. Mat. Iberoamericana 26 (2) (2010), 449–479. (2010) Zbl1201.30061MR2677004DOI10.4171/RMI/606
  8. Brackx, F., Schepper, H. De, Schepper, N. De, Sommen, F., 10.1007/s00006-007-0032-0, Adv. Appl. Clifford Algebras 17 (3) (2007), 311–330. (2007) Zbl1134.30039MR2350582DOI10.1007/s00006-007-0032-0
  9. Brackx, F., Schepper, H. De, Sommen, F., 10.3934/cpaa.2007.6.549, Commun. Pure Appl. Anal. 6 (3) (2007), 549–567. (2007) Zbl1149.30036MR2318288DOI10.3934/cpaa.2007.6.549
  10. Brackx, F., Schepper, H. De, Sommen, F., 10.1007/s00006-008-0081-z, Adv. Appl. Clifford Algebras 18 (3–4) (2008), 451–487. (2008) Zbl1177.30064MR2490567DOI10.1007/s00006-008-0081-z
  11. Brackx, F., Schepper, H. De, Souček, V., On the structure of complex Clifford algebra, accepted for publication in Adv. Appl. Clifford Algebras. 
  12. Colombo, F., Sabadini, I., Sommen, F., Struppa, D. C., Analysis of Dirac systems and computational algebra, Birkhäuser, Boston, 2004. (2004) Zbl1064.30049MR2089988
  13. Damiano, A., Eelbode, D., 10.1007/s00006-009-0155-6, Adv. Appl. Clifford Algebras 19 (2) (2009), 237–251. (2009) Zbl1177.22008MR2524668DOI10.1007/s00006-009-0155-6
  14. Delanghe, R., Lávička, R., Souček, V., The Fischer decomposition for Hodge–de Rham Systems in Euclidean space, to appear. 
  15. Delanghe, R., Sommen, F., Souček, V., Clifford algebra and spinor–valued functions – A function theory for the Dirac operator, Kluwer Academic Publishers, Dordrecht, 1992. (1992) MR1169463
  16. Eelbode, D., 10.1080/10586458.2007.10128982, Experiment. Math. 16 (1) (2007), 55–66. (2007) Zbl1201.30064MR2312977DOI10.1080/10586458.2007.10128982
  17. Eelbode, D., 10.1080/17476930802331956, Complex Var. Elliptic Equ. 53 (10) (2008), 975–987. (2008) MR2453891DOI10.1080/17476930802331956
  18. Eelbode, D., He, F. L., 10.1007/s11785-009-0036-y, Compl. Anal. Oper. Theory. MR2773058DOI10.1007/s11785-009-0036-y
  19. Fischer, E., Über die Differentiationsprozesse der Algebra, J. für Math. 148 (1917), 1–78. (1917) 
  20. Gilbert, J., Murray, M., Clifford Algebra and Dirac Operators in Harmonic Analysis, Cambridge University Press, 1991. (1991) MR1130821
  21. Goodman, R., Wallach, N. R., Representations and Invariants of the Classical Groups, Cambridge University Press, 2003. (2003) MR1606831
  22. Gürlebeck, K., Sprössig, W., Quaternionic and Clifford Calculus for Physicists and Engineers, J. Wiley & Sons, Chichester, 1997. (1997) 
  23. Rocha–Chavez, R., Shapiro, M., Sommen, F., Integral theorems for functions and differential forms in m , vol. 428, Research Notes in Math., 2002. (2002) MR1889406
  24. Sabadini, I., Sommen, F., 10.1002/mma.378, Math. Methods Appl. Sci. 25 (16–18) (2002), 1395–1414. (2002) Zbl1013.30033MR1949504DOI10.1002/mma.378
  25. Sommen, F., Peña, D. Peña, 10.1002/mma.824, Math. Methods Appl. Sci. 30 (9) (2007), 1049–1055. (2007) Zbl1117.30040MR2321942DOI10.1002/mma.824
  26. Stein, E. M., Weiss, G., 10.2307/2373431, Amer. J. Math. 90 (1968), 163–196. (1968) Zbl0157.18303MR0223492DOI10.2307/2373431

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.