Fischer decompositions in Euclidean and Hermitean Clifford analysis
Freddy Brackx; Hennie de Schepper; Vladimír Souček
Archivum Mathematicum (2010)
- Volume: 046, Issue: 5, page 301-321
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBrackx, Freddy, de Schepper, Hennie, and Souček, Vladimír. "Fischer decompositions in Euclidean and Hermitean Clifford analysis." Archivum Mathematicum 046.5 (2010): 301-321. <http://eudml.org/doc/116494>.
@article{Brackx2010,
abstract = {Euclidean Clifford analysis is a higher dimensional function theory studying so–called monogenic functions, i.e. null solutions of the rotation invariant, vector valued, first order Dirac operator $\underline\{\partial \}$. In the more recent branch Hermitean Clifford analysis, this rotational invariance has been broken by introducing a complex structure $J$ on Euclidean space and a corresponding second Dirac operator $\underline\{\partial \}_J$, leading to the system of equations $\underline\{\partial \} f = 0 = \underline\{\partial \}_J f$ expressing so-called Hermitean monogenicity. The invariance of this system is reduced to the unitary group U($n$). In this paper we decompose the spaces of homogeneous monogenic polynomials into U($n$)-irrucibles involving homogeneous Hermitean monogenic polynomials and we carry out a dimensional analysis of those spaces. Meanwhile an overview is given of so-called Fischer decompositions in Euclidean and Hermitean Clifford analysis.},
author = {Brackx, Freddy, de Schepper, Hennie, Souček, Vladimír},
journal = {Archivum Mathematicum},
keywords = {Fischer decomposition; Clifford analysis; Fischer decomposition; Clifford analysis},
language = {eng},
number = {5},
pages = {301-321},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Fischer decompositions in Euclidean and Hermitean Clifford analysis},
url = {http://eudml.org/doc/116494},
volume = {046},
year = {2010},
}
TY - JOUR
AU - Brackx, Freddy
AU - de Schepper, Hennie
AU - Souček, Vladimír
TI - Fischer decompositions in Euclidean and Hermitean Clifford analysis
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 5
SP - 301
EP - 321
AB - Euclidean Clifford analysis is a higher dimensional function theory studying so–called monogenic functions, i.e. null solutions of the rotation invariant, vector valued, first order Dirac operator $\underline{\partial }$. In the more recent branch Hermitean Clifford analysis, this rotational invariance has been broken by introducing a complex structure $J$ on Euclidean space and a corresponding second Dirac operator $\underline{\partial }_J$, leading to the system of equations $\underline{\partial } f = 0 = \underline{\partial }_J f$ expressing so-called Hermitean monogenicity. The invariance of this system is reduced to the unitary group U($n$). In this paper we decompose the spaces of homogeneous monogenic polynomials into U($n$)-irrucibles involving homogeneous Hermitean monogenic polynomials and we carry out a dimensional analysis of those spaces. Meanwhile an overview is given of so-called Fischer decompositions in Euclidean and Hermitean Clifford analysis.
LA - eng
KW - Fischer decomposition; Clifford analysis; Fischer decomposition; Clifford analysis
UR - http://eudml.org/doc/116494
ER -
References
top- Brackx, F., Bureš, J., Schepper, H. De, Eelbode, D., Sommen, F., Souček, V., 10.1007/s11785-007-0010-5, Compl. Anal. Oper. Theory 1 (3) (2007), 341–365. (2007) MR2336028DOI10.1007/s11785-007-0010-5
- Brackx, F., Bureš, J., Schepper, H. De, Eelbode, D., Sommen, F., Souček, V., Fundaments of Hermitean Clifford analysis – Part II: Splitting of –monogenic equations, Complex Var. Elliptic Equ. 52 (10–11) (2007), 1063–1079. (2007) MR2374972
- Brackx, F., Delanghe, R., Sommen, F., Clifford Analysis, Pitman Publishers, 1982. (1982) Zbl0529.30001MR0697564
- Brackx, F., Delanghe, R., Sommen, F., Differential forms andor multi–vector functions, Cubo 7 (2) (2005), 139–169. (2005) Zbl1105.58002MR2186030
- Brackx, F., Knock, B. De, Schepper, H. De, 10.1016/j.jmaa.2008.03.043, J. Math. Anal. Appl. 344 (2) (2008), 1068–1078. (2008) Zbl1148.44004MR2426334DOI10.1016/j.jmaa.2008.03.043
- Brackx, F., Knock, B. De, Schepper, H. De, Sommen, F., 10.1007/s00574-009-0018-8, Bull. Braz. Math. Soc. (N.S.) 40 (3) (2009), 395–416. (2009) Zbl1182.30081MR2540516DOI10.1007/s00574-009-0018-8
- Brackx, F., Schepper, H. De, Eelbode, D., Souček, V., 10.4171/RMI/606, Rev. Mat. Iberoamericana 26 (2) (2010), 449–479. (2010) Zbl1201.30061MR2677004DOI10.4171/RMI/606
- Brackx, F., Schepper, H. De, Schepper, N. De, Sommen, F., 10.1007/s00006-007-0032-0, Adv. Appl. Clifford Algebras 17 (3) (2007), 311–330. (2007) Zbl1134.30039MR2350582DOI10.1007/s00006-007-0032-0
- Brackx, F., Schepper, H. De, Sommen, F., 10.3934/cpaa.2007.6.549, Commun. Pure Appl. Anal. 6 (3) (2007), 549–567. (2007) Zbl1149.30036MR2318288DOI10.3934/cpaa.2007.6.549
- Brackx, F., Schepper, H. De, Sommen, F., 10.1007/s00006-008-0081-z, Adv. Appl. Clifford Algebras 18 (3–4) (2008), 451–487. (2008) Zbl1177.30064MR2490567DOI10.1007/s00006-008-0081-z
- Brackx, F., Schepper, H. De, Souček, V., On the structure of complex Clifford algebra, accepted for publication in Adv. Appl. Clifford Algebras.
- Colombo, F., Sabadini, I., Sommen, F., Struppa, D. C., Analysis of Dirac systems and computational algebra, Birkhäuser, Boston, 2004. (2004) Zbl1064.30049MR2089988
- Damiano, A., Eelbode, D., 10.1007/s00006-009-0155-6, Adv. Appl. Clifford Algebras 19 (2) (2009), 237–251. (2009) Zbl1177.22008MR2524668DOI10.1007/s00006-009-0155-6
- Delanghe, R., Lávička, R., Souček, V., The Fischer decomposition for Hodge–de Rham Systems in Euclidean space, to appear.
- Delanghe, R., Sommen, F., Souček, V., Clifford algebra and spinor–valued functions – A function theory for the Dirac operator, Kluwer Academic Publishers, Dordrecht, 1992. (1992) MR1169463
- Eelbode, D., 10.1080/10586458.2007.10128982, Experiment. Math. 16 (1) (2007), 55–66. (2007) Zbl1201.30064MR2312977DOI10.1080/10586458.2007.10128982
- Eelbode, D., 10.1080/17476930802331956, Complex Var. Elliptic Equ. 53 (10) (2008), 975–987. (2008) MR2453891DOI10.1080/17476930802331956
- Eelbode, D., He, F. L., 10.1007/s11785-009-0036-y, Compl. Anal. Oper. Theory. MR2773058DOI10.1007/s11785-009-0036-y
- Fischer, E., Über die Differentiationsprozesse der Algebra, J. für Math. 148 (1917), 1–78. (1917)
- Gilbert, J., Murray, M., Clifford Algebra and Dirac Operators in Harmonic Analysis, Cambridge University Press, 1991. (1991) MR1130821
- Goodman, R., Wallach, N. R., Representations and Invariants of the Classical Groups, Cambridge University Press, 2003. (2003) MR1606831
- Gürlebeck, K., Sprössig, W., Quaternionic and Clifford Calculus for Physicists and Engineers, J. Wiley & Sons, Chichester, 1997. (1997)
- Rocha–Chavez, R., Shapiro, M., Sommen, F., Integral theorems for functions and differential forms in , vol. 428, Research Notes in Math., 2002. (2002) MR1889406
- Sabadini, I., Sommen, F., 10.1002/mma.378, Math. Methods Appl. Sci. 25 (16–18) (2002), 1395–1414. (2002) Zbl1013.30033MR1949504DOI10.1002/mma.378
- Sommen, F., Peña, D. Peña, 10.1002/mma.824, Math. Methods Appl. Sci. 30 (9) (2007), 1049–1055. (2007) Zbl1117.30040MR2321942DOI10.1002/mma.824
- Stein, E. M., Weiss, G., 10.2307/2373431, Amer. J. Math. 90 (1968), 163–196. (1968) Zbl0157.18303MR0223492DOI10.2307/2373431
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.