Canonical bases for 𝔰𝔩 ( 2 , ) -modules of spherical monogenics in dimension 3

Roman Lávička

Archivum Mathematicum (2010)

  • Volume: 046, Issue: 5, page 339-349
  • ISSN: 0044-8753

Abstract

top
Spaces of homogeneous spherical monogenics in dimension 3 can be considered naturally as 𝔰𝔩 ( 2 , ) -modules. As finite-dimensional irreducible 𝔰𝔩 ( 2 , ) -modules, they have canonical bases which are, by construction, orthogonal. In this note, we show that these orthogonal bases form the Appell system and coincide with those constructed recently by S. Bock and K. Gürlebeck in [3]. Moreover, we obtain simple expressions of elements of these bases in terms of the Legendre polynomials.

How to cite

top

Lávička, Roman. "Canonical bases for $\mathfrak {sl}(2,{\mathbb {C}})$-modules of spherical monogenics in dimension 3." Archivum Mathematicum 046.5 (2010): 339-349. <http://eudml.org/doc/116497>.

@article{Lávička2010,
abstract = {Spaces of homogeneous spherical monogenics in dimension 3 can be considered naturally as $\{\mathfrak \{sl\}\}(2,\{\mathbb \{C\}\})$-modules. As finite-dimensional irreducible $\{\mathfrak \{sl\}\}(2,\{\mathbb \{C\}\})$-modules, they have canonical bases which are, by construction, orthogonal. In this note, we show that these orthogonal bases form the Appell system and coincide with those constructed recently by S. Bock and K. Gürlebeck in [3]. Moreover, we obtain simple expressions of elements of these bases in terms of the Legendre polynomials.},
author = {Lávička, Roman},
journal = {Archivum Mathematicum},
keywords = {spherical monogenics; orthogonal basis; Legendre polynomials; $\mathfrak \{sl\}(2,\{\mathbb \{C\}\})$-module; spherical monogenics; orthogonal basis; Legendre polynomials; -module},
language = {eng},
number = {5},
pages = {339-349},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Canonical bases for $\mathfrak \{sl\}(2,\{\mathbb \{C\}\})$-modules of spherical monogenics in dimension 3},
url = {http://eudml.org/doc/116497},
volume = {046},
year = {2010},
}

TY - JOUR
AU - Lávička, Roman
TI - Canonical bases for $\mathfrak {sl}(2,{\mathbb {C}})$-modules of spherical monogenics in dimension 3
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 5
SP - 339
EP - 349
AB - Spaces of homogeneous spherical monogenics in dimension 3 can be considered naturally as ${\mathfrak {sl}}(2,{\mathbb {C}})$-modules. As finite-dimensional irreducible ${\mathfrak {sl}}(2,{\mathbb {C}})$-modules, they have canonical bases which are, by construction, orthogonal. In this note, we show that these orthogonal bases form the Appell system and coincide with those constructed recently by S. Bock and K. Gürlebeck in [3]. Moreover, we obtain simple expressions of elements of these bases in terms of the Legendre polynomials.
LA - eng
KW - spherical monogenics; orthogonal basis; Legendre polynomials; $\mathfrak {sl}(2,{\mathbb {C}})$-module; spherical monogenics; orthogonal basis; Legendre polynomials; -module
UR - http://eudml.org/doc/116497
ER -

References

top
  1. Bock, S., Über funktionentheoretische Methoden in der räumlichen Elastizitätstheorie, Ph.D. thesis, University Weimar, 2010, German, http://e-pub.uni-weimar.de/frontdoor.php?source_opus=1503. (2010) 
  2. Bock, S., Gürlebeck, K., On an orthonormal basis of solid spherical monogenics recursively generated by anti–holomorphic z ¯ –powers, Proc. of ICNAAM 2009, AIP Conference Proceedings (Simos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), vol. 1168, 2009, pp. 765–768. (2009) Zbl1191.30017
  3. Bock, S., Gürlebeck, K., On a generalized Appell system and monogenic power series, Math. Methods Appl. Sci. 33 (4) (2010), 394–411. (2010) Zbl1195.30068MR2641616
  4. Bock, S., Gürlebeck, K., Lávička, R., Souček, V., Gelfand–Tsetlin bases for spherical monogenics in dimension 3, preprint. 
  5. Brackx, F., Delanghe, R., Sommen, F., Clifford Analysis, Pitman, London, 1982. (1982) Zbl0529.30001MR0697564
  6. Brackx, F., Schepper, H. De, Lávička, R., Souček, V., Gelfand–Tsetlin Bases of Orthogonal Polynomials in Hermitean Clifford Analysis, preprint. 
  7. Brackx, F., Schepper, H. De, Lávička, R., Souček, V., The Cauchy–Kovalevskaya Extension Theorem in Hermitean Clifford Analysis, preprint. 
  8. Bröcker, T., tom Dieck, T., Representations of Compact Lie Groups, Springer, New York, 1985. (1985) MR0781344
  9. Cação, I., Constructive approximation by monogenic polynomials, Ph.D. thesis, Univ. Aveiro, 2004. (2004) 
  10. Cação, I., Malonek, H. R., Remarks on some properties of monogenic polynomials, Proc. of ICNAAM 2006 (Simos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), Wiley–VCH, Weinheim, 2006, pp. 596–599. (2006) 
  11. Cação, I., Malonek, H. R., On a complete set of hypercomplex Appell polynomials, Proc. of ICNAAM 2008 (Timos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), vol. 1048, 2008, AIP Conference Proceedings, pp. 647–650. (2008) 
  12. Delanghe, R., On homogeneous polynomial solutions of the Riesz system and their harmonic potentials, Complex Var. Elliptic Equ. 52 (10–11) (2007), 1047–1061. (2007) Zbl1201.30063MR2374971
  13. Delanghe, R., Lávička, R., Souček, V., The Gelfand–Tsetlin bases for Hodge–de Rham systems in Euclidean spaces, preprint. 
  14. Delanghe, R., Sommen, F., Souček, V., Clifford Algebra and Spinor–Valued Functions, Kluwer Academic Publishers, Dordrecht, 1992. (1992) MR1169463
  15. Falcão, M. I., Cruz, J. F., Malonek, H. R., Remarks on the generation of monogenic functions, Proc. of IKM 2006 (Gürlebeck, K., Könke, C., eds.), Bauhaus–University Weimar, 2006, ISSN 1611–4086. (2006) 
  16. Falcão, M. I., Malonek, H. R., Generalized exponentials through Appell sets in n + 1 and Bessel functions, Proc. of ICNAAM 2007 (Simos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), vol. 936, 2007, AIP Conference Proceedings, pp. 750–753. (2007) 
  17. Gilbert, J. E., Murray, M. A. M., Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge University Press, 1991. (1991) Zbl0733.43001MR1130821
  18. Gürlebeck, K., Morais, J., On the development of Bohr’s phenomenon in the context of quaternionic analysis and related problems, arXiv:1004.1188v1 [math.CV], 2010. 
  19. Gürlebeck, K., Morais, J., Real–Part Estimates for Solutions of the Riesz System in 3 , arXiv:1004.1191v1 [math.CV], 2010. 
  20. Gürlebeck, K., Morais, J., On monogenic primitives of Fueter polynomials, Proc. of ICNAAM 2006 (Simos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), Wiley–VCH, Weinheim, 2006, pp. 600–605. (2006) 
  21. Gürlebeck, K., Morais, J., 10.1007/s00006-007-0047-6, Adv. Appl. Clifford Algebras 17 (3) (2007), 481–496. (2007) Zbl1208.30047MR2350593DOI10.1007/s00006-007-0047-6
  22. Gürlebeck, K., Morais, J., 10.1007/BF03321749, Comput. Methods Funct. Theory 9 (2) (2009), 633–651. (2009) MR2572660DOI10.1007/BF03321749
  23. Sommen, F., Spingroups and spherical means III, Rend. Circ. Mat. Palermo (2) Suppl. 1 (1989), 295–323. (1989) Zbl0709.35077MR1009582
  24. Sudbery, A., 10.1017/S0305004100055638, Math. Proc. Cambridge Philos. Soc. 85 (1979), 199–225. (1979) Zbl0399.30038MR0516081DOI10.1017/S0305004100055638
  25. Van Lancker, P.,, 10.1007/s00006-009-0168-1, Adv. Appl. Clifford Algebra 19 (2009), 467–496. (2009) Zbl1172.30030MR2524683DOI10.1007/s00006-009-0168-1
  26. Zeitlinger, P., Beiträge zur Clifford Analysis und deren Modifikation, Ph.D. thesis, University Erlangen, 2005. (2005) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.