Implication and equivalential reducts of basic algebras
Ivan Chajda; Miroslav Kolařík; Filip Švrček
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2010)
- Volume: 49, Issue: 2, page 21-36
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topChajda, Ivan, Kolařík, Miroslav, and Švrček, Filip. "Implication and equivalential reducts of basic algebras." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 49.2 (2010): 21-36. <http://eudml.org/doc/116511>.
@article{Chajda2010,
abstract = {A term operation implication is introduced in a given basic algebra $\mathcal \{A\}$ and properties of the implication reduct of $\mathcal \{A\}$ are treated. We characterize such implication basic algebras and get congruence properties of the variety of these algebras. A term operation equivalence is introduced later and properties of this operation are described. It is shown how this operation is related with the induced partial order of $\mathcal \{A\}$ and, if this partial order is linear, the algebra $\mathcal \{A\}$ can be reconstructed by means of its equivalential reduct.},
author = {Chajda, Ivan, Kolařík, Miroslav, Švrček, Filip},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Basic algebra; implication algebra; implication reduct; equivalential algebra; equivalential reduct; basic algebra; orthomodular lattice; MV-algebra; implication reduct; equivalential reduct; congruence property; implication basic algebra},
language = {eng},
number = {2},
pages = {21-36},
publisher = {Palacký University Olomouc},
title = {Implication and equivalential reducts of basic algebras},
url = {http://eudml.org/doc/116511},
volume = {49},
year = {2010},
}
TY - JOUR
AU - Chajda, Ivan
AU - Kolařík, Miroslav
AU - Švrček, Filip
TI - Implication and equivalential reducts of basic algebras
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2010
PB - Palacký University Olomouc
VL - 49
IS - 2
SP - 21
EP - 36
AB - A term operation implication is introduced in a given basic algebra $\mathcal {A}$ and properties of the implication reduct of $\mathcal {A}$ are treated. We characterize such implication basic algebras and get congruence properties of the variety of these algebras. A term operation equivalence is introduced later and properties of this operation are described. It is shown how this operation is related with the induced partial order of $\mathcal {A}$ and, if this partial order is linear, the algebra $\mathcal {A}$ can be reconstructed by means of its equivalential reduct.
LA - eng
KW - Basic algebra; implication algebra; implication reduct; equivalential algebra; equivalential reduct; basic algebra; orthomodular lattice; MV-algebra; implication reduct; equivalential reduct; congruence property; implication basic algebra
UR - http://eudml.org/doc/116511
ER -
References
top- Abbott, J. C., 10.1007/BF02120879, Studia Logica 35 (1976), 173–177. (1976) Zbl0331.02036MR0441794DOI10.1007/BF02120879
- Chajda, I., Eigenthaler, G., Länger, H., Congruence Classes in Universal Algebra, Heldermann Verlag, Lemgo (Germany), 2003. (2003) MR1985832
- Chajda, I., Halaš, R., Kühr, J., Semilattice Structures, Heldermann Verlag, Lemgo (Germany), 2007. (2007) Zbl1117.06001MR2326262
- Chajda, I., Kolařík, M., 10.1007/s00500-008-0291-2, Soft Computing 13, 1 (2009), 41–43. (2009) Zbl1178.06007DOI10.1007/s00500-008-0291-2
- Cignoli, R. L. O., D’Ottaviano, I. M. L., Mundici, D., Algebraic Foundations of Many-valued Reasoning, Kluwer, Dordrecht–Boston–London, 2000. (2000) MR1786097
- Kowalski, T., Pretabular varieties of equivalential algebras, Reports on Mathematical Logic 33 (1999), 1001–1008. (1999) Zbl0959.08004MR1764179
- Megill, N. D., Pavičić, M., 10.1023/B:IJTP.0000006007.58191.da, Int. J. Theor. Phys. 42, 12 (2003), 2807–2822. (2003) Zbl1039.81007MR2023776DOI10.1023/B:IJTP.0000006007.58191.da
- Słomczynska, K., 10.1007/BF01243593, Algebra Universalis 35 (1996), 524–547. (1996) MR1392281DOI10.1007/BF01243593
- Tax, R. E., 10.1305/ndjfl/1093891099, Notre Dame Journal of Formal Logic 14 (1973), 448–456. (1973) MR0329866DOI10.1305/ndjfl/1093891099
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.