On geodesic mappings preserving the Einstein tensor

Olena E. Chepurna; Volodymyr A. Kiosak; Josef Mikeš

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2010)

  • Volume: 49, Issue: 2, page 49-52
  • ISSN: 0231-9721

Abstract

top
In this paper there are discussed the geodesic mappings which preserved the Einstein tensor. We proved that the tensor of concircular curvature is invariant under Einstein tensor-preserving geodesic mappings.

How to cite

top

Chepurna, Olena E., Kiosak, Volodymyr A., and Mikeš, Josef. "On geodesic mappings preserving the Einstein tensor." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 49.2 (2010): 49-52. <http://eudml.org/doc/116513>.

@article{Chepurna2010,
abstract = {In this paper there are discussed the geodesic mappings which preserved the Einstein tensor. We proved that the tensor of concircular curvature is invariant under Einstein tensor-preserving geodesic mappings.},
author = {Chepurna, Olena E., Kiosak, Volodymyr A., Mikeš, Josef},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Geodesic mapping; Einstein tensor; geodesic mapping; Einstein tensor},
language = {eng},
number = {2},
pages = {49-52},
publisher = {Palacký University Olomouc},
title = {On geodesic mappings preserving the Einstein tensor},
url = {http://eudml.org/doc/116513},
volume = {49},
year = {2010},
}

TY - JOUR
AU - Chepurna, Olena E.
AU - Kiosak, Volodymyr A.
AU - Mikeš, Josef
TI - On geodesic mappings preserving the Einstein tensor
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2010
PB - Palacký University Olomouc
VL - 49
IS - 2
SP - 49
EP - 52
AB - In this paper there are discussed the geodesic mappings which preserved the Einstein tensor. We proved that the tensor of concircular curvature is invariant under Einstein tensor-preserving geodesic mappings.
LA - eng
KW - Geodesic mapping; Einstein tensor; geodesic mapping; Einstein tensor
UR - http://eudml.org/doc/116513
ER -

References

top
  1. Chepurna, O., Kiosak, V., Mikeš, J, Conformal mappings of Riemannian spaces which preserve the Einstein tensor, J. Appl. Math. Aplimat 3, 1 (2010), 253–258. (2010) 
  2. Mikeš, J., 10.1007/BF01709156, Math. Notes 28 (1981), 922–923, Translation of Mat. Zametki 28 (1980), 935–938. (1981) MR0603226DOI10.1007/BF01709156
  3. Mikeš, J., 10.1007/BF02365193, J. Math. Sci. 78, 3 (1996), 311–333. (1996) MR1384327DOI10.1007/BF02365193
  4. Mikeš, J., Hinterleitner, I., Kiosak, V., On the theory of geodesic mappings of Einstein spaces and their generalizations, AIP Conf. Proc. 861 (2006), 428–435. (2006) 
  5. Mikeš, J., Kiosak, V. A., Vanžurová, A., Geodesic mappings of manifolds with affine connection, Palacky University Press, Olomouc, 2008. (2008) Zbl1176.53004MR2488821
  6. Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic mappings and some generalizations, Palacky University Press, Olomouc, 2009. (2009) Zbl1222.53002MR2682926
  7. Sinyukov, N. S., Geodesic mappings of Riemannian spaces, Nauka, Moscow, 1979. (1979) Zbl0637.53020MR0552022
  8. Yano, K., Concircular Geometry, Proc. Imp. Acad. 16 (Tokyo), (1940), 195–200, 354–360, 442–448, 505–511. (1940) Zbl0025.08504

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.