Medial quasigroups of type
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2010)
- Volume: 49, Issue: 2, page 107-122
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topVanžurová, Alena. "Medial quasigroups of type $(n,k)$." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 49.2 (2010): 107-122. <http://eudml.org/doc/116518>.
@article{Vanžurová2010,
abstract = {Our aim is to demonstrate how the apparatus of groupoid terms (on two variables) might be employed for studying properties of parallelism in the so called $(n,k)$-quasigroups. We show that an incidence structure associated with a medial quasigroup of type $(n,k)$, $n>k\ge 3$, is either an affine space of dimension at least three, or a desarguesian plane. Conversely, if we start either with an affine space of order $k>2$ and dimension $m$, or with a desarguesian affine plane of order $k>2$ then there is a medial quasigroup of type $(k^m,k)$, $m>2$ such that the incidence structure naturally associated to a quasigroup is isomorphic with the starting one (the simplest case $k=2$ can be examined separately but is of little interest). The proofs are mostly based on properties of groupoid term functions, applied to idempotent medial quasigroups (idempotency means that $x\cdot x=x$ holds, and mediality means that the identity $(xy)(uv)=(xu)(yv)$ is satisfied).},
author = {Vanžurová, Alena},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Quasigroup; idempotent groupoid term; mediality; incidence structure; parallelism; affine space; desarguesian affine plane; medial quasigroups; idempotent groupoid terms; mediality; incidence structures; parallelism; affine spaces; Desarguesian affine plane},
language = {eng},
number = {2},
pages = {107-122},
publisher = {Palacký University Olomouc},
title = {Medial quasigroups of type $(n,k)$},
url = {http://eudml.org/doc/116518},
volume = {49},
year = {2010},
}
TY - JOUR
AU - Vanžurová, Alena
TI - Medial quasigroups of type $(n,k)$
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2010
PB - Palacký University Olomouc
VL - 49
IS - 2
SP - 107
EP - 122
AB - Our aim is to demonstrate how the apparatus of groupoid terms (on two variables) might be employed for studying properties of parallelism in the so called $(n,k)$-quasigroups. We show that an incidence structure associated with a medial quasigroup of type $(n,k)$, $n>k\ge 3$, is either an affine space of dimension at least three, or a desarguesian plane. Conversely, if we start either with an affine space of order $k>2$ and dimension $m$, or with a desarguesian affine plane of order $k>2$ then there is a medial quasigroup of type $(k^m,k)$, $m>2$ such that the incidence structure naturally associated to a quasigroup is isomorphic with the starting one (the simplest case $k=2$ can be examined separately but is of little interest). The proofs are mostly based on properties of groupoid term functions, applied to idempotent medial quasigroups (idempotency means that $x\cdot x=x$ holds, and mediality means that the identity $(xy)(uv)=(xu)(yv)$ is satisfied).
LA - eng
KW - Quasigroup; idempotent groupoid term; mediality; incidence structure; parallelism; affine space; desarguesian affine plane; medial quasigroups; idempotent groupoid terms; mediality; incidence structures; parallelism; affine spaces; Desarguesian affine plane
UR - http://eudml.org/doc/116518
ER -
References
top- Belousov, V. D., Transitive distributive quasigroups, Ukr. Mat. Zhur 10, 1 (1958), 13–22. (1958)
- Belousov, V. D., Foundations of the theory of quasigroups and loops, Nauka, Moscow, 1967, (in Russian). (1967) MR0218483
- Bruck, R. H., A Survey of Binary Systems, Springer, Berlin, 1958. (1958) Zbl0081.01704MR0093552
- Denecke., K., Wismath, Sh. L., Universal Algebra and Applications in Theoretical Computer Science, Chapman and Hall/CRC, 2002. (2002) Zbl0993.08001MR1887177
- Duplák, J., On some permutations of a medial quasigroup, Mat. Čas. 24 (1974), 315–324, (in Russian). (1974) MR0384971
- Duplák, J., On some properties of transitive quasigroups, Zborník Ped. fak. Univ. Šafárika 1 (1976), 29–35, (in Slovak). (1976)
- Duplák, J., 10.1007/BF01245945, J. Geom. 43 (1992), 95–107. (1992) MR1148259DOI10.1007/BF01245945
- Ganter, B., Werner, H., 10.1016/S0167-5060(08)70167-5, Ann. Disc. Math. 7 (1980), 3–24. (1980) Zbl0437.51007MR0584400DOI10.1016/S0167-5060(08)70167-5
- Havel, V. J., Vanžurová, A., Medial Quasigroups and Geometry, Palacky University Press, Olomouc, 2006. (2006)
- Ihringer, Th., Allgemeine Algebra, Teubner, Stuttgart, 1988. (1988) Zbl0661.08001MR0972980
- Lindner, C. C., Rodger, C. A., Design Theory, CRC Press, London, New York, Washington, 1997. (1997) Zbl0926.68090
- Ježek, J., Kepka, T., Medial Groupoids, Academia, Praha, 1983. (1983) MR0734873
- Kárteszi, F., Introduction to Finite Geometries, Budapest, 1976. (1976) MR0423175
- Lenz, H., 10.1007/BF01360143, Math. Ann. 128 (1954), 363–373. (1954) Zbl0056.13801MR0067503DOI10.1007/BF01360143
- Pflugfelder, H. O., Quasigroups and Loops, Introduction, Heldermann Verlag, Berlin, 1990. (1990) Zbl0715.20043MR1125767
- Pukharev, N. K., On -algebras and finite regular planes, Sib. Mat. Zhur. 6, 4 (1965), 892–899, (in Russian). (1965)
- Pukharev, N. K., On construction of -algebras, Sib. Mat. Zhur. 7, 3 (1966), 724–727, (in Russian). (1966)
- Pukharev, N. K., Geometric questions of some medial quasigroups, Sib. Mat. Zhur. 9, 4 (1968), 891–897, (in Russian). (1968) MR0238170
- Pukharev, N. K., Some properties of groupoids and quasigroups connected with balanced incomplete block schemes, Quasigroups and Latine squares, Mat. Issl., Kishinev 71 (1983), 77–85, (in Russian). (1983) MR0699124
- Romanowska, A., Smith, J. D. H., Modal Theory, An Algebraic Approach to Order, Geometry, and Convexity, Heldermann Verlag, Berlin, 1985. (1985) Zbl0553.08001MR0788695
- Romanowska, A., Smith, J. D. H., Modes, World Scientific, New Jersey, London, Singapore, Hong Kong, 2002. (2002) Zbl1012.08001MR1932199
- Szamkolowicz, L., On the problem of existence of finite regular planes, Colloq. Math. 9 (1962), 245–250. (1962) Zbl0106.14302MR0142047
- Szamkolowicz, L., Remarks on finite regular planes, Colloq. Math. 10 (1963), 31–37. (1963) Zbl0118.15201MR0164273
- Šiftar, J., 10.1007/BF01917989, J. Geom. 20 (1983), 1–7. (1983) MR0710059DOI10.1007/BF01917989
- Stein, S. K., 10.2140/pjm.1964.14.1091, Pacif. J. Math. 14 (1964), 1091–1102. (1964) Zbl0132.26502MR0170972DOI10.2140/pjm.1964.14.1091
- Szmielew, W., From Affine to Euclidean Geometry, Polish Scientific Publishers & D. Reidel Publishing Company, Warszawa & Dordrecht–Boston–London, 1983. (1983) Zbl0516.51001MR0720548
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.