# A note on existence theorem of Peano

Archivum Mathematicum (2011)

- Volume: 047, Issue: 2, page 83-89
- ISSN: 0044-8753

## Access Full Article

top## Abstract

top## How to cite

topZubelevich, Oleg. "A note on existence theorem of Peano." Archivum Mathematicum 047.2 (2011): 83-89. <http://eudml.org/doc/116536>.

@article{Zubelevich2011,

abstract = {An ODE with non-Lipschitz right hand side has been considered. A family of solutions with $L^p$-dependence of the initial data has been obtained. A special set of initial data has been constructed. In this set the family is continuous. The measure of this set has been estimated.},

author = {Zubelevich, Oleg},

journal = {Archivum Mathematicum},

keywords = {Peano existence theorem; non-Lipschitz nonlinearity; non-uniqueness; IVP; ODE; Cauchy problem; Peano existence theorem; non-Lipschitz nonlinearity; non-uniqueness; Cauchy problem},

language = {eng},

number = {2},

pages = {83-89},

publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},

title = {A note on existence theorem of Peano},

url = {http://eudml.org/doc/116536},

volume = {047},

year = {2011},

}

TY - JOUR

AU - Zubelevich, Oleg

TI - A note on existence theorem of Peano

JO - Archivum Mathematicum

PY - 2011

PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno

VL - 047

IS - 2

SP - 83

EP - 89

AB - An ODE with non-Lipschitz right hand side has been considered. A family of solutions with $L^p$-dependence of the initial data has been obtained. A special set of initial data has been constructed. In this set the family is continuous. The measure of this set has been estimated.

LA - eng

KW - Peano existence theorem; non-Lipschitz nonlinearity; non-uniqueness; IVP; ODE; Cauchy problem; Peano existence theorem; non-Lipschitz nonlinearity; non-uniqueness; Cauchy problem

UR - http://eudml.org/doc/116536

ER -

## References

top- Bownds, M., A uniqueness theorem for non-Lipschitzian systems of ordinary differential equations, Funkcial. Ekvac. 13 (1970), 61–65. (1970) MR0293150
- Brauer, F., Sternberg, S., 10.2307/2372792, Amer. J. Math. 80 (1958), 421–430. (1958) Zbl0082.06801MR0095303DOI10.2307/2372792
- Coddington, E. A., Levinson, N., Theory of Ordinary Differential Equations, McGraw–Hill Book Company, 1955. (1955) Zbl0064.33002MR0069338
- Engelking, R., General Topology, PWN–Polish Scientific Publishers, Warsaw, 1977. (1977) Zbl0373.54002MR0500780
- Folland, G. B., Real analysis. Modern techniques and their applications. Second edition, Wiley-Interscience Publication, John Wiley and Sons, 1999. (1999) MR1681462
- Godunov, A. N., 10.1007/BF01078180, Funct. Anal. Appl. 9 (1975), 53–55. (1975) Zbl0314.34059DOI10.1007/BF01078180
- Hartman, P., Ordinary Differential Equations, New York-London-Sydney, John Wiley and Sons, 1964. (1964) Zbl0125.32102MR0171038
- Kamke, E., Differentialgleichungen reeler Functionen, Akademische Verlagsgesellschaft, Geest and Portig K.–G., 1930. (1930)
- Kato, S., On existence and uniqueness conditions for nonlinear ordinary differential equations in Banach spaces, Funkcial. Ekvac. 19 (3) (1976), 239–245. (1976) Zbl0358.34064MR0435538
- Krasnoselskii, M. A., Krein, S. G., On a class of uniqueness theorems for the equations ${y}^{\text{'}}=f(x,y)$, Uspekhi Mat. Nauk (N.S.) 11 no. 1 (67) (1956), 209–213. (1956) MR0079152
- Levy, P., Provessus stochastiques et mouvement Brownien, Gauthier–Villars, Paris, 1948. (1948) MR0190953
- Ramankutty, P., Kamke’s uniqueness theorem, J. London Math. Soc. (2) 22 (1982), 110–116. (1982) MR0579814
- Schwartz, L., Analyse mathèmatique, Herman, 1967. (1967) Zbl0171.01301
- Sobolevskii, S. L., 10.1023/A:1016038732103, Differential Equations 38 (3) (2002), 451–452. (2002) MR2005086DOI10.1023/A:1016038732103
- Szep, A., Existence theorem for weak solutions for ordinary differential equations in reflexive Banach spaces, Studia Sci. Math. Hungar. 6 (1971), 197–203. (1971) MR0330688
- Yorke, J. A., A continuous differential equation in Hilbert space without existence, Funkcial. Ekvac. 13 (1970), 19–21. (1970) Zbl0248.34061MR0264196

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.