Criterion of -criticality for one term -order difference operators
Archivum Mathematicum (2011)
- Volume: 047, Issue: 2, page 99-109
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topHasil, Petr. "Criterion of $p$-criticality for one term $2n$-order difference operators." Archivum Mathematicum 047.2 (2011): 99-109. <http://eudml.org/doc/116538>.
@article{Hasil2011,
abstract = {We investigate the criticality of the one term $2n$-order difference operators $l(y)_k = \Delta ^n (r_k \Delta ^n y_k)$. We explicitly determine the recessive and the dominant system of solutions of the equation $l(y)_k = 0$. Using their structure we prove a criticality criterion.},
author = {Hasil, Petr},
journal = {Archivum Mathematicum},
keywords = {one term difference operator; recessive system of solutions; $p$-critical operator; sub/supercritical operator; one term difference operator; recessive system of solutions; -critical operator; difference operator convergence; divergence},
language = {eng},
number = {2},
pages = {99-109},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Criterion of $p$-criticality for one term $2n$-order difference operators},
url = {http://eudml.org/doc/116538},
volume = {047},
year = {2011},
}
TY - JOUR
AU - Hasil, Petr
TI - Criterion of $p$-criticality for one term $2n$-order difference operators
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 2
SP - 99
EP - 109
AB - We investigate the criticality of the one term $2n$-order difference operators $l(y)_k = \Delta ^n (r_k \Delta ^n y_k)$. We explicitly determine the recessive and the dominant system of solutions of the equation $l(y)_k = 0$. Using their structure we prove a criticality criterion.
LA - eng
KW - one term difference operator; recessive system of solutions; $p$-critical operator; sub/supercritical operator; one term difference operator; recessive system of solutions; -critical operator; difference operator convergence; divergence
UR - http://eudml.org/doc/116538
ER -
References
top- Agarwal, R. P., Difference equations and inequalities, theory, methods, and applications, Pure Appl. Math. (1992), M. Dekker, New York, Basel, Hong Kong. (1992) Zbl0925.39001MR1155840
- Ahlbrandt, C. D., Peterson, A. C., Discrete Hamiltonian systems: Difference equations, continued fractions, and Riccati equations, Kluwer Academic Publishers, Boston, 1996. (1996) Zbl0860.39001MR1423802
- Bohner, M., 10.1006/jmaa.1996.0177, J. Math. Anal. Appl. 199 (1996), 804–826. (1996) MR1386607DOI10.1006/jmaa.1996.0177
- Bohner, M., Došlý, O., 10.1216/rmjm/1181071889, Rocky Mountain J. Math. 27 (1997), 707–743. (1997) MR1490271DOI10.1216/rmjm/1181071889
- Bohner, M., Došlý, O., Kratz, W., 10.1016/S0893-9659(98)00156-6, Appl. Math. Lett. 12 (1999), 101–106. (1999) MR1749755DOI10.1016/S0893-9659(98)00156-6
- Došlý, O., 10.1080/10236199808808154, J. Differ. Equations Appl. 4 (1998), 425–450. (1998) MR1665162DOI10.1080/10236199808808154
- Došlý, O., Hasil, P., Critical higher order Sturm–Liouville difference operators, J. Differ. Equations Appl., to appear.
- Došlý, O., Komenda, J., Conjugacy criteria and principal solutions of self–adjoint differential equations, Arch. Math. (Brno) 31 (1995), 217–238. (1995) MR1368260
- Erbe, L., Yan, P., 10.1016/0022-247X(92)90347-G, J. Math. Anal. Appl. 171 (1992), 334–345. (1992) Zbl0768.39001MR1194083DOI10.1016/0022-247X(92)90347-G
- Gesztesy, F., Zhao, Z., 10.1006/jdeq.1993.1042, J. Differential Equations 103 (1993), 68–93. (1993) Zbl0807.47004MR1218739DOI10.1006/jdeq.1993.1042
- Kratz, W., Quadratic functionals in variational analysis and control theory, Mathematical topics, Volume 6, Akademie Verlag, Berlin, 1995. (1995) Zbl0842.49001MR1334092
- Kratz, W., Sturm–Liouville difference equations and banded matrices, Arch. Math. (Brno) 36 (2000), 499–505. (2000) Zbl1072.39500MR1822819
- Kratz, W., 10.1016/S0024-3795(01)00328-7, Linear Algebra Appl. 337 (2001), 1–20. (2001) Zbl1002.39028MR1856849DOI10.1016/S0024-3795(01)00328-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.