Nonlinear stability of a quadratic functional equation with complex involution
Archivum Mathematicum (2011)
- Volume: 047, Issue: 2, page 111-117
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topSaadati, Reza, and Sadeghi, Ghadir. "Nonlinear stability of a quadratic functional equation with complex involution." Archivum Mathematicum 047.2 (2011): 111-117. <http://eudml.org/doc/116539>.
@article{Saadati2011,
abstract = {Let $X, Y$ be complex vector spaces. Recently, Park and Th.M. Rassias showed that if a mapping $f : X \rightarrow Y$ satisfies
\begin\{eqnarray\} f(x+i y)+ f(x-iy) = 2 f(x) - 2f(y) \end\{eqnarray\}
for all $x$, $y\in X$, then the mapping $f \colon X \rightarrow Y$ satisfies $f(x+y) + f(x-y) = 2 f(x) + 2 f(y)$ for all $x$, $y \in X$. Furthermore, they proved the generalized Hyers-Ulam stability of the functional equation () in complex Banach spaces. In this paper, we will adopt the idea of Park and Th. M. Rassias to prove the stability of a quadratic functional equation with complex involution via fixed point method.},
author = {Saadati, Reza, Sadeghi, Ghadir},
journal = {Archivum Mathematicum},
keywords = {quadratic mapping; fixed point; quadratic functional equation; generalized Hyers-Ulam stability; quadratic functional equation; generalized Hyers-Ulam stability; fixed point method},
language = {eng},
number = {2},
pages = {111-117},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Nonlinear stability of a quadratic functional equation with complex involution},
url = {http://eudml.org/doc/116539},
volume = {047},
year = {2011},
}
TY - JOUR
AU - Saadati, Reza
AU - Sadeghi, Ghadir
TI - Nonlinear stability of a quadratic functional equation with complex involution
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 2
SP - 111
EP - 117
AB - Let $X, Y$ be complex vector spaces. Recently, Park and Th.M. Rassias showed that if a mapping $f : X \rightarrow Y$ satisfies
\begin{eqnarray} f(x+i y)+ f(x-iy) = 2 f(x) - 2f(y) \end{eqnarray}
for all $x$, $y\in X$, then the mapping $f \colon X \rightarrow Y$ satisfies $f(x+y) + f(x-y) = 2 f(x) + 2 f(y)$ for all $x$, $y \in X$. Furthermore, they proved the generalized Hyers-Ulam stability of the functional equation () in complex Banach spaces. In this paper, we will adopt the idea of Park and Th. M. Rassias to prove the stability of a quadratic functional equation with complex involution via fixed point method.
LA - eng
KW - quadratic mapping; fixed point; quadratic functional equation; generalized Hyers-Ulam stability; quadratic functional equation; generalized Hyers-Ulam stability; fixed point method
UR - http://eudml.org/doc/116539
ER -
References
top- Cădariu, L., Radu, V., Fixed points and the stability of Jensen’s functional equation, J. Inequal. Pure Appl. Math. 4 (1) (2003), 7 pp, Art. ID 4. (2003) Zbl1043.39010MR1965984
- Cholewa, P. W., 10.1007/BF02192660, Aequationes Math. 27 (1984), 76–86. (1984) Zbl0549.39006MR0758860DOI10.1007/BF02192660
- Czerwik, S., 10.1007/BF02941618, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64. (1992) Zbl0779.39003MR1182841DOI10.1007/BF02941618
- Diaz, J., Margolis, B., 10.1090/S0002-9904-1968-11933-0, Bull. Amer. Math. Soc. 74 (1968), 305–309. (1968) Zbl0157.29904MR0220267DOI10.1090/S0002-9904-1968-11933-0
- Fauiziev, V., Sahoo, K. P., 10.1007/s12044-007-0003-3, Proc. Indian Acad. Sci. Math. Sci. 117 (2007), 31–48. (2007) MR2300676DOI10.1007/s12044-007-0003-3
- Găvruta, P., Găvruta, L., A new method for the generalized Hyers–Ulam–Rassias stability, Int. J. Nonlinear Anal. Appl. 1 (2) (2010), 11–18. (2010)
- Hyers, D. H., 10.1073/pnas.27.4.222, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224. (1941) Zbl0061.26403MR0004076DOI10.1073/pnas.27.4.222
- Hyers, D. H., Isac, G., Rassias, Th. M., Stability of Functional Equations in Several Variables, Birkhäser, Basel, 1998. (1998) Zbl0907.39025MR1639801
- Isac, G., Rassias, Th. M., 10.1155/S0161171296000324, Internat. J. Math. Math. Sci. 19 (1996), 219–228. (1996) Zbl0843.47036MR1375983DOI10.1155/S0161171296000324
- Jun, K., Kim, H., On the stability of an –dimensional quadratic and additive functional equation, Math. Inequal. Appl. 9 (2006), 153–165. (2006) Zbl1093.39026MR2198559
- Jung, S., Lee, Z., A fixed point approach to the stability of quadratic functional equation with involution, Fixed Point Theory and Applications (2008), Article ID 732086 (2008). (2008) Zbl1149.39022MR2415405
- Khodaei, H., Rassias, Th. M., Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. 1 (1) (2010), 22–41. (2010)
- Mirzavaziri, M., Moslehian, M. S., 10.1007/s00574-006-0016-z, Bull. Brazil. Math. Soc. 37 (2006), 361–376. (2006) MR2267783DOI10.1007/s00574-006-0016-z
- Park, C., Rassias, Th. M., Fixed points and generalized Hyers–Ulam stability of quadratic functional equations, J. Math. Inequal. 37 (2006), 515–528. (2006) MR2408405
- Radu, V., The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91–96. (2003) Zbl1051.39031MR2031824
- Rassias, Th. M., On the stability of the quadratic functional equation and its applications, Studia Univ. Babeş–Bolyai Math. XLIII (1998), 89–124. (1998) Zbl1009.39025MR1854544
- Rassias, Th. M., 10.1023/A:1006499223572, Acta Appl. Math. 62 (1) (2000), 23–130. (2000) Zbl0981.39014MR1778016DOI10.1023/A:1006499223572
- Skof, F., 10.1007/BF02924890, Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129. (1983) DOI10.1007/BF02924890
- Ulam, S. M., Problems in Modern Mathematics, Wiley, New York, 1960. (1960) MR0280310
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.