A remark on the Morita theorem for operads

Alexandru E. Stanculescu

Archivum Mathematicum (2011)

  • Volume: 047, Issue: 2, page 139-150
  • ISSN: 0044-8753

Abstract

top
We extend a result of M. M. Kapranov and Y. Manin concerning the Morita theory for linear operads. We also give a cyclic operad version of their result.

How to cite

top

Stanculescu, Alexandru E.. "A remark on the Morita theorem for operads." Archivum Mathematicum 047.2 (2011): 139-150. <http://eudml.org/doc/116542>.

@article{Stanculescu2011,
abstract = {We extend a result of M. M. Kapranov and Y. Manin concerning the Morita theory for linear operads. We also give a cyclic operad version of their result.},
author = {Stanculescu, Alexandru E.},
journal = {Archivum Mathematicum},
keywords = {operads; Morita theorems; operad; Morita theorem},
language = {eng},
number = {2},
pages = {139-150},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A remark on the Morita theorem for operads},
url = {http://eudml.org/doc/116542},
volume = {047},
year = {2011},
}

TY - JOUR
AU - Stanculescu, Alexandru E.
TI - A remark on the Morita theorem for operads
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 2
SP - 139
EP - 150
AB - We extend a result of M. M. Kapranov and Y. Manin concerning the Morita theory for linear operads. We also give a cyclic operad version of their result.
LA - eng
KW - operads; Morita theorems; operad; Morita theorem
UR - http://eudml.org/doc/116542
ER -

References

top
  1. Fresse, B., 10.1006/jabr.1997.7280, J. Algebra 202 (2) (1998), 455–511. (1998) Zbl1041.18009MR1617616DOI10.1006/jabr.1997.7280
  2. Kapranov, M. M., Manin, Y., 10.1353/ajm.2001.0033, Amer. J. Math. 123 (5) (2001), 811–838. (2001) Zbl1001.18004MR1854112DOI10.1353/ajm.2001.0033
  3. Kelly, G. M., On the operads of J. P. May, Represent. Theory Appl. Categ. (13) (2005), 1–13, electronic. (2005) Zbl1082.18009MR2177746
  4. Lam, T. Y., Lectures on modules and rings, Graduate Texts in Mathematics ed., no. 189, Springer–Verlag, New York, 1999. (1999) Zbl0911.16001MR1653294
  5. Markl, M., Operads and PROPs, Handbook of algebra ed., vol. 5, Elsevier, North–Holland, Amsterdam, 2008. (2008) Zbl1211.18007MR2523450
  6. Pareigis, B., Non–additive ring and module theory. I. General theory of monoids, Publ. Math. Debrecen 24 (1–2) (1977), 189–204. (1977) Zbl0377.16021MR0450361
  7. Pareigis, B., Non-additive ring and module theory. II. C –categories, C –functors and C –morphisms, Publ. Math. Debrecen 24 (3–4) (1977), 351–361. (1977) MR0498792
  8. Pareigis, B., Non-additive ring and module theory. III. Morita equivalences, Publ. Math. Debrecen 25 (1–2) (1978), 177–186. (1978) Zbl0377.16023MR0498793
  9. Rezk, C., Spaces of algebra structures and cohomology of operads, Ph.D. thesis, MIT, 1996. (1996) MR2716655
  10. Vitale, E. M., Monoidal categories for Morita theory, Cahiers Topologie Géom. Différentielle Catég. 33 (1992), 331–343. (1992) Zbl0850.18005MR1197429

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.