On complete spacelike hypersurfaces with R = a H + b in locally symmetric Lorentz spaces

Yingbo Han; Shuxiang Feng; Liju Yu

Archivum Mathematicum (2011)

  • Volume: 047, Issue: 2, page 151-161
  • ISSN: 0044-8753

Abstract

top
In this note, we investigate n -dimensional spacelike hypersurfaces M n with R = a H + b in locally symmetric Lorentz space. Two rigidity theorems are obtained for these spacelike hypersurfaces.

How to cite

top

Han, Yingbo, Feng, Shuxiang, and Yu, Liju. "On complete spacelike hypersurfaces with $R=aH+b$ in locally symmetric Lorentz spaces." Archivum Mathematicum 047.2 (2011): 151-161. <http://eudml.org/doc/116543>.

@article{Han2011,
abstract = {In this note, we investigate $n$-dimensional spacelike hypersurfaces $M^n$ with $R=aH+b$ in locally symmetric Lorentz space. Two rigidity theorems are obtained for these spacelike hypersurfaces.},
author = {Han, Yingbo, Feng, Shuxiang, Yu, Liju},
journal = {Archivum Mathematicum},
keywords = {spacelike submanifolds; locally symmetric Lorentz spaces; spacelike submanifold; locally symmetric Lorentz space},
language = {eng},
number = {2},
pages = {151-161},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On complete spacelike hypersurfaces with $R=aH+b$ in locally symmetric Lorentz spaces},
url = {http://eudml.org/doc/116543},
volume = {047},
year = {2011},
}

TY - JOUR
AU - Han, Yingbo
AU - Feng, Shuxiang
AU - Yu, Liju
TI - On complete spacelike hypersurfaces with $R=aH+b$ in locally symmetric Lorentz spaces
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 2
SP - 151
EP - 161
AB - In this note, we investigate $n$-dimensional spacelike hypersurfaces $M^n$ with $R=aH+b$ in locally symmetric Lorentz space. Two rigidity theorems are obtained for these spacelike hypersurfaces.
LA - eng
KW - spacelike submanifolds; locally symmetric Lorentz spaces; spacelike submanifold; locally symmetric Lorentz space
UR - http://eudml.org/doc/116543
ER -

References

top
  1. Alencar, H., do Carmo, M., 10.1090/S0002-9939-1994-1172943-2, Proc. Amer. Math. Soc. 120 (1994), 1223–1229. (1994) MR1172943DOI10.1090/S0002-9939-1994-1172943-2
  2. Baek, J. Ok, Cheng, Q. M., Suh, Y.Jin, 10.1016/S0393-0440(03)00090-1, J. Geom. Phys. 49 (2004), 231–247. (2004) MR2077302DOI10.1016/S0393-0440(03)00090-1
  3. Camargo, F. E. C., Chaves, R. M. B., Sousa, Jr., L. A. M., 10.1016/j.difgeo.2008.04.020, Differential Geom. Appl. 26 (2008), 592–599. (2008) Zbl1160.53361MR2474421DOI10.1016/j.difgeo.2008.04.020
  4. Cheng, Q. M., Ishikawa, S., Space-like hypersurfaces with constant scalar curvature, Manuscripta Math. 95 (1998), 499–505. (1998) MR1618206
  5. Cheng, S. Y., Yau, S. T., 10.1007/BF01425237, Math. Ann. 225 (1977), 195–204. (1977) Zbl0349.53041MR0431043DOI10.1007/BF01425237
  6. Choi, S. M., Lyu, S. M., Suh, Y. J., Complete spacelike hypersurfaces in a Lorentz manifolds, Math. J. Toyama Univ. 22 (1999), 499–505. (1999) 
  7. Goddard, A. J., 10.1017/S0305004100054153, Math. Proc. Cambridge Philos. Soc. 82 (1977), 489–495. (1977) MR0458344DOI10.1017/S0305004100054153
  8. Liu, J. C., Sun, Z. Y., 10.1016/j.jmaa.2009.10.029, J. Math. Anal. Appl. 364 (1) (2010), 195–203. (2010) Zbl1188.53069MR2576063DOI10.1016/j.jmaa.2009.10.029
  9. Liu, X. M., 10.1007/s002290100187, Manuscripta Math. 105 (2001), 367–377. (2001) Zbl1002.53043MR1856617DOI10.1007/s002290100187
  10. Okumura, M., 10.2307/2373587, Amer. J. Math. 96 (1974), 207–213. (1974) Zbl0302.53028MR0353216DOI10.2307/2373587
  11. Omori, H., 10.2969/jmsj/01920205, J. Math. Soc. Japan 19 (1967), 205–214. (1967) MR0215259DOI10.2969/jmsj/01920205
  12. Suh, Y. J., Choi, Y. S., Yang, H. Y., On spacelike hypersurfaces with constant mean curvature in a Lorentz manifold, Houston J. Math. 28 (2002), 47–70. (2002) MR1876939
  13. Zhang, S. C., Wu, B. Q., 10.1016/j.geomphys.2009.10.005, J. Geom. Phys. 60 (2010), 333–340. (2010) MR2587397DOI10.1016/j.geomphys.2009.10.005
  14. Zheng, Y., 10.1007/BF00773403, Ann. Global Anal. Geom. 13 (1995), 317–321. (1995) DOI10.1007/BF00773403
  15. Zheng, Y., 10.1016/0926-2245(96)00006-X, Differential Geom. Appl. 6 (1996), 51–54. (1996) MR1384878DOI10.1016/0926-2245(96)00006-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.