Optimal Control of Obstacle Problems: Existence of Lagrange Multipliers
Maïtine Bergounioux; Fulbert Mignot
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 5, page 45-70
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBergounioux, Maïtine, and Mignot, Fulbert. "Optimal Control of Obstacle Problems: Existence of Lagrange Multipliers ." ESAIM: Control, Optimisation and Calculus of Variations 5 (2010): 45-70. <http://eudml.org/doc/116555>.
@article{Bergounioux2010,
abstract = {
We study first order optimality systems for the control of a system
governed by a variational
inequality and deal with Lagrange multipliers: is
it possible to associate to each pointwise constraint a multiplier
to get a “good” optimality system?
We give
positive and negative answers for the finite and infinite dimensional cases.
These results are compared with
the previous ones got by penalization or differentiation.
},
author = {Bergounioux, Maïtine, Mignot, Fulbert},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Variational inequalities; optimal control;
Lagrange multiplier; obstacle problem.; variational inequalities; first-order optimality systems; Lagrange multipliers},
language = {eng},
month = {3},
pages = {45-70},
publisher = {EDP Sciences},
title = {Optimal Control of Obstacle Problems: Existence of Lagrange Multipliers },
url = {http://eudml.org/doc/116555},
volume = {5},
year = {2010},
}
TY - JOUR
AU - Bergounioux, Maïtine
AU - Mignot, Fulbert
TI - Optimal Control of Obstacle Problems: Existence of Lagrange Multipliers
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 5
SP - 45
EP - 70
AB -
We study first order optimality systems for the control of a system
governed by a variational
inequality and deal with Lagrange multipliers: is
it possible to associate to each pointwise constraint a multiplier
to get a “good” optimality system?
We give
positive and negative answers for the finite and infinite dimensional cases.
These results are compared with
the previous ones got by penalization or differentiation.
LA - eng
KW - Variational inequalities; optimal control;
Lagrange multiplier; obstacle problem.; variational inequalities; first-order optimality systems; Lagrange multipliers
UR - http://eudml.org/doc/116555
ER -
References
top- D.R. Adams, S. Lenhart and J. Yong, Optimal control of variational inequalities. Appl. Math. Optim.38 (1998) 121-140.
- V. Barbu, Optimal control of variational inequalities. Pitman, Boston, Res. Notes Math.100 (1984).
- M. Bergounioux, Optimal control of an obstacle problem. Appl. Math. Optim.36 (1997) 147-172.
- M. Bergounioux, Optimal control of problems governed by abstract variational inequalities with state constraints. SIAM J. Control Optim.36 (1998) 273-289.
- M. Bergounioux, Augmented lagrangian method for distributed optimal control problems with state constraints. J. Optim. Theory Appl.78 (1993) 493-521.
- M. Bergounioux and H. Dietrich, Optimal control of problems governed by obstacle type variational inequalities: A dual regularization-penalization approach. J. Convex Anal.5 (1998) 329-351.
- M. Bergounioux, M. Haddou, M. Hintermueller and K. Kunisch, A comparison of interior point methods and a Moreau-Yosida based active set strategy for constrained optimal control problems. Report 98-15 Université d'Orléans (1998).
- M. Bergounioux and H. Zidani, Pontryagin principle for problems governed by parabolic variational inequalities. SIAM J. Control Optim.37 (1999) 1273-1290.
- A. Bermudez and C. Saguez, Optimal control of variational inequalities. Optimality conditions and numerical methods. Collection Free Boundary Problems, Application and Theory, Vol. IV. Maubusson, Res. Notes Math.121 (1984) 478-487.
- A. Bermudez and C. Saguez, Optimal control of a Signorini Problem. SIAM J. Control Optim.25 (1987) 576-582.
- P.G. Ciarlet and P.A. Raviart, Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg.2 (1973) 17-31.
- W. Hackbusch, Elliptic Differential Equations, Theory and Numerical Treatment. Springer Verlag, Berlin, Ser. Comput. Math.18 (1992).
- K. Ito and K. Kunisch, An augmented Lagrangian technics for variational inequalities. Appl. Math. Optim.21 (1990) 223-241.
- K. Ito and K. Kunisch, Optimal control of elliptic variational inequalities, to appear.
- S. Kurcyusz, On the existence and nonexistence of Lagrange multipliers in Banach spaces. J. Optim. Theory Appl.5 (1976) 81-110.
- F. Mignot, Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal.22 (1976) 130-185.
- F. Mignot and J.P. Puel, Optimal control in some variational inequalities. SIAM J. Control Optim.22 (1984) 466-476.
- F. Mignot and J.P. Puel, Contrôle optimal d'un système gouverné par une inéquation variationnelle parabolique. C. R. Acad. Sci. Paris Sér. I Math. 298 (1984) 277-280.
- D. Tiba and F. Tröltzsch, Error estimates for the discretization of state constrained convex control problems. Num. Funct. Anal. Optim.17 (1996) 1005-1028.
- L. Wenbin and J.E. Rubio, Optimality conditions for strongly monotone variational inequalities. Appl. Math. Optim.27 (1993) 291-312.
- J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim.5 (1979) 49-62.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.