Optimal Control of Obstacle Problems: Existence of Lagrange Multipliers

Maïtine Bergounioux; Fulbert Mignot

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 5, page 45-70
  • ISSN: 1292-8119

Abstract

top
We study first order optimality systems for the control of a system governed by a variational inequality and deal with Lagrange multipliers: is it possible to associate to each pointwise constraint a multiplier to get a “good” optimality system? We give positive and negative answers for the finite and infinite dimensional cases. These results are compared with the previous ones got by penalization or differentiation.

How to cite

top

Bergounioux, Maïtine, and Mignot, Fulbert. "Optimal Control of Obstacle Problems: Existence of Lagrange Multipliers ." ESAIM: Control, Optimisation and Calculus of Variations 5 (2010): 45-70. <http://eudml.org/doc/116555>.

@article{Bergounioux2010,
abstract = { We study first order optimality systems for the control of a system governed by a variational inequality and deal with Lagrange multipliers: is it possible to associate to each pointwise constraint a multiplier to get a “good” optimality system? We give positive and negative answers for the finite and infinite dimensional cases. These results are compared with the previous ones got by penalization or differentiation. },
author = {Bergounioux, Maïtine, Mignot, Fulbert},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Variational inequalities; optimal control; Lagrange multiplier; obstacle problem.; variational inequalities; first-order optimality systems; Lagrange multipliers},
language = {eng},
month = {3},
pages = {45-70},
publisher = {EDP Sciences},
title = {Optimal Control of Obstacle Problems: Existence of Lagrange Multipliers },
url = {http://eudml.org/doc/116555},
volume = {5},
year = {2010},
}

TY - JOUR
AU - Bergounioux, Maïtine
AU - Mignot, Fulbert
TI - Optimal Control of Obstacle Problems: Existence of Lagrange Multipliers
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 5
SP - 45
EP - 70
AB - We study first order optimality systems for the control of a system governed by a variational inequality and deal with Lagrange multipliers: is it possible to associate to each pointwise constraint a multiplier to get a “good” optimality system? We give positive and negative answers for the finite and infinite dimensional cases. These results are compared with the previous ones got by penalization or differentiation.
LA - eng
KW - Variational inequalities; optimal control; Lagrange multiplier; obstacle problem.; variational inequalities; first-order optimality systems; Lagrange multipliers
UR - http://eudml.org/doc/116555
ER -

References

top
  1. D.R. Adams, S. Lenhart and J. Yong, Optimal control of variational inequalities. Appl. Math. Optim.38 (1998) 121-140.  
  2. V. Barbu, Optimal control of variational inequalities. Pitman, Boston, Res. Notes Math.100 (1984).  
  3. M. Bergounioux, Optimal control of an obstacle problem. Appl. Math. Optim.36 (1997) 147-172.  
  4. M. Bergounioux, Optimal control of problems governed by abstract variational inequalities with state constraints. SIAM J. Control Optim.36 (1998) 273-289.  
  5. M. Bergounioux, Augmented lagrangian method for distributed optimal control problems with state constraints. J. Optim. Theory Appl.78 (1993) 493-521.  
  6. M. Bergounioux and H. Dietrich, Optimal control of problems governed by obstacle type variational inequalities: A dual regularization-penalization approach. J. Convex Anal.5 (1998) 329-351.  
  7. M. Bergounioux, M. Haddou, M. Hintermueller and K. Kunisch, A comparison of interior point methods and a Moreau-Yosida based active set strategy for constrained optimal control problems. Report 98-15 Université d'Orléans (1998).  
  8. M. Bergounioux and H. Zidani, Pontryagin principle for problems governed by parabolic variational inequalities. SIAM J. Control Optim.37 (1999) 1273-1290.  
  9. A. Bermudez and C. Saguez, Optimal control of variational inequalities. Optimality conditions and numerical methods. Collection Free Boundary Problems, Application and Theory, Vol. IV. Maubusson, Res. Notes Math.121 (1984) 478-487.  
  10. A. Bermudez and C. Saguez, Optimal control of a Signorini Problem. SIAM J. Control Optim.25 (1987) 576-582.  
  11. P.G. Ciarlet and P.A. Raviart, Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg.2 (1973) 17-31.  
  12. W. Hackbusch, Elliptic Differential Equations, Theory and Numerical Treatment. Springer Verlag, Berlin, Ser. Comput. Math.18 (1992).  
  13. K. Ito and K. Kunisch, An augmented Lagrangian technics for variational inequalities. Appl. Math. Optim.21 (1990) 223-241.  
  14. K. Ito and K. Kunisch, Optimal control of elliptic variational inequalities, to appear.  
  15. S. Kurcyusz, On the existence and nonexistence of Lagrange multipliers in Banach spaces. J. Optim. Theory Appl.5 (1976) 81-110.  
  16. F. Mignot, Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal.22 (1976) 130-185.  
  17. F. Mignot and J.P. Puel, Optimal control in some variational inequalities. SIAM J. Control Optim.22 (1984) 466-476.  
  18. F. Mignot and J.P. Puel, Contrôle optimal d'un système gouverné par une inéquation variationnelle parabolique. C. R. Acad. Sci. Paris Sér. I Math. 298 (1984) 277-280.  
  19. D. Tiba and F. Tröltzsch, Error estimates for the discretization of state constrained convex control problems. Num. Funct. Anal. Optim.17 (1996) 1005-1028.  
  20. L. Wenbin and J.E. Rubio, Optimality conditions for strongly monotone variational inequalities. Appl. Math. Optim.27 (1993) 291-312.  
  21. J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim.5 (1979) 49-62.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.