Sharp large deviations for Gaussian quadratic forms with applications

Bernard Bercu; Fabrice Gamboa; Marc Lavielle

ESAIM: Probability and Statistics (2010)

  • Volume: 4, page 1-24
  • ISSN: 1292-8100

Abstract

top
Under regularity assumptions, we establish a sharp large deviation principle for Hermitian quadratic forms of stationary Gaussian processes. Our result is similar to the well-known Bahadur-Rao theorem [2] on the sample mean. We also provide several examples of application such as the sharp large deviation properties of the Neyman-Pearson likelihood ratio test, of the sum of squares, of the Yule-Walker estimator of the parameter of a stable autoregressive Gaussian process, and finally of the empirical spectral repartition function.

How to cite

top

Bercu, Bernard, Gamboa, Fabrice, and Lavielle, Marc. " Sharp large deviations for Gaussian quadratic forms with applications." ESAIM: Probability and Statistics 4 (2010): 1-24. <http://eudml.org/doc/116583>.

@article{Bercu2010,
abstract = { Under regularity assumptions, we establish a sharp large deviation principle for Hermitian quadratic forms of stationary Gaussian processes. Our result is similar to the well-known Bahadur-Rao theorem [2] on the sample mean. We also provide several examples of application such as the sharp large deviation properties of the Neyman-Pearson likelihood ratio test, of the sum of squares, of the Yule-Walker estimator of the parameter of a stable autoregressive Gaussian process, and finally of the empirical spectral repartition function. },
author = {Bercu, Bernard, Gamboa, Fabrice, Lavielle, Marc},
journal = {ESAIM: Probability and Statistics},
keywords = {Large deviations; Gaussian processes; quadratic forms; Toeplitz matrices.; Toeplitz matrices},
language = {eng},
month = {3},
pages = {1-24},
publisher = {EDP Sciences},
title = { Sharp large deviations for Gaussian quadratic forms with applications},
url = {http://eudml.org/doc/116583},
volume = {4},
year = {2010},
}

TY - JOUR
AU - Bercu, Bernard
AU - Gamboa, Fabrice
AU - Lavielle, Marc
TI - Sharp large deviations for Gaussian quadratic forms with applications
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 4
SP - 1
EP - 24
AB - Under regularity assumptions, we establish a sharp large deviation principle for Hermitian quadratic forms of stationary Gaussian processes. Our result is similar to the well-known Bahadur-Rao theorem [2] on the sample mean. We also provide several examples of application such as the sharp large deviation properties of the Neyman-Pearson likelihood ratio test, of the sum of squares, of the Yule-Walker estimator of the parameter of a stable autoregressive Gaussian process, and finally of the empirical spectral repartition function.
LA - eng
KW - Large deviations; Gaussian processes; quadratic forms; Toeplitz matrices.; Toeplitz matrices
UR - http://eudml.org/doc/116583
ER -

References

top
  1. Azencott R. and Dacunha-Castelle D., Séries d'observations irrégulières. Masson (1984).  
  2. Bahadur R. and Ranga Rao R., On deviations of the sample mean. Ann. Math. Statist.31 (1960) 1015-1027.  
  3. Barndoff-Nielsen O.E. and Cox D.R., Asymptotic techniques for uses in statistics. Chapman and Hall, Londres (1989).  
  4. Barone P., Gigli A. and Piccioni M., Optimal importance sampling for some quadratic forms of A.R.M.A. processes. IEEE Trans. Inform. Theory41 (1995) 1834-1844.  
  5. Basor E., A localization theorem for Toeplitz determinants. Indiana Univ. Math. J.28 (1979) 975-983.  
  6. Basor E., Asymptotic formulas for Toeplitz and Wiener-Hopf operators. Integral Equations Operator Theory5 (1982) 659-665.  
  7. Bercu B., Gamboa F. and Rouault A., Large deviations for quadratic forms of stationary Gaussian processes. Stochastic Process. Appl.71 (1997) 75-90.  
  8. Book S.A., Large deviation probabilities for weighted sums. Ann. Math. Statist.43 (1972) 1221-1234.  
  9. Bottcher A. and Silbermann. Analysis of Toeplitz operators. Springer, Berlin (1990).  
  10. Bouaziz M., Testing Gaussian sequences and asymptotic inversion of Toeplitz operators. Probab. Math. Statist.14 (1993) 207-222.  
  11. Bryc W. and Dembo A., Large deviations for quadratic functionals of Gaussian processes. J. Theoret. Probab.10 (1997) 307-332.  
  12. Bryc W. and Smolenski W., On large deviation principle for a quadratic functional of the autoregressive process. Statist. Probab. Lett.17 (1993) 281-285.  
  13. Bucklew J.A., Large deviations techniques in decision, simulation, and estimation. Wiley (1990).  
  14. Bucklew J. and Sadowsky J., A contribution to the theory of Chernoff bounds. IEEE Trans. Inform. Theory39 (1993) 249-254.  
  15. Coursol J. and Dacunha-Castelle D., Sur la formule de Chernoff pour deux processus gaussiens stationnaires. C. R. Acad. Sci.Sér. I Math.288 (1979) 769-770.  
  16. Cramér H., Random variables and probability distributions. Cambridge University Press (1970).  
  17. Dacunha-Castelle D., Remarque sur l'étude asymptotique du rapport de vraisemblance de deux processus gaussiens. C. R. Acad. Sci.Sér. I Math.288 (1979) 225-228.  
  18. Dembo A. and Zeitouni O., Large deviations techniques and applications. Jones and Barblett Pub. Boston (1993).  
  19. Esseen C., Fourier analysis of distribution functions. Acta Math.77 (1945) 1-25.  
  20. Gamboa F. and Gassiat E., Sets of superresolution and the maximum entropy method on the mean. SIAM J. Math. Anal.27 (1996) 1129-1152.  
  21. Gamboa F. and Gassiat E., Bayesian methods for ill posed problems. Ann. Statist.25 (1997) 328-350.  
  22. Golinskii B. and Ibragimov I., On Szegös limit theorem. Math. USSR- Izv.5 (1971) 421-444.  
  23. Grenander V. and Szegö G., Toeplitz forms and their applications. University of California Press (1958).  
  24. Guyon X., Random fields on a network/ modeling, statistics and applications. Springer (1995).  
  25. Hartwig R.E. and Fisher M.E., Asymptotic behavior of Toeplitz matrices and determinants. Arch. Rational Mech. Anal.32 (1969) 190-225.  
  26. Howland J., Trace class Hankel operators. Quart. J. Math. Oxford Ser. (2)22 (1971) 147-159.  
  27. Jensen J.L., Saddlepoint Approximations. Oxford Statist. Sci. Ser. 16 (1995).  
  28. Johansson K., On Szegös asymptotic formula for Toeplitz determinants and generalizations. Bull. Sci. Math.112 (1988) 257-304.  
  29. Lavielle M., Detection of changes in the spectrum of a multidimensional process. IEEE Trans. Signal Process.42 (1993) 742-749.  
  30. Lehmann E.L., Testing statistical hypotheses. John Wiley and Sons, New-York (1959).  
  31. Rudin W., Real and complex analysis. McGraw Hill International Editions (1987).  
  32. Taniguchi M., Higher order asymptotic theory for time series analysis. Springer, Berlin (1991).  
  33. Widom H., On the limit block Toeplitz determinants. Proc. Amer. Math. Soc.50 (1975) 167-173.  
  34. Widom H., Asymptotic behavior of block Toeplitz matrices and determinants II. Adv. Math. 21 (1976).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.