Sharp large deviations for Gaussian quadratic forms with applications
Bernard Bercu; Fabrice Gamboa; Marc Lavielle
ESAIM: Probability and Statistics (2010)
- Volume: 4, page 1-24
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topBercu, Bernard, Gamboa, Fabrice, and Lavielle, Marc. " Sharp large deviations for Gaussian quadratic forms with applications." ESAIM: Probability and Statistics 4 (2010): 1-24. <http://eudml.org/doc/116583>.
@article{Bercu2010,
abstract = {
Under regularity assumptions, we establish a sharp large
deviation principle for Hermitian quadratic forms of
stationary Gaussian processes. Our result is similar to
the well-known Bahadur-Rao theorem [2] on the sample
mean. We also provide several examples of application
such as the sharp large deviation properties of
the Neyman-Pearson likelihood ratio test, of the sum of squares,
of the Yule-Walker
estimator of the parameter of a stable autoregressive Gaussian process,
and finally of the empirical spectral repartition function.
},
author = {Bercu, Bernard, Gamboa, Fabrice, Lavielle, Marc},
journal = {ESAIM: Probability and Statistics},
keywords = {Large deviations; Gaussian processes; quadratic forms; Toeplitz matrices.; Toeplitz matrices},
language = {eng},
month = {3},
pages = {1-24},
publisher = {EDP Sciences},
title = { Sharp large deviations for Gaussian quadratic forms with applications},
url = {http://eudml.org/doc/116583},
volume = {4},
year = {2010},
}
TY - JOUR
AU - Bercu, Bernard
AU - Gamboa, Fabrice
AU - Lavielle, Marc
TI - Sharp large deviations for Gaussian quadratic forms with applications
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 4
SP - 1
EP - 24
AB -
Under regularity assumptions, we establish a sharp large
deviation principle for Hermitian quadratic forms of
stationary Gaussian processes. Our result is similar to
the well-known Bahadur-Rao theorem [2] on the sample
mean. We also provide several examples of application
such as the sharp large deviation properties of
the Neyman-Pearson likelihood ratio test, of the sum of squares,
of the Yule-Walker
estimator of the parameter of a stable autoregressive Gaussian process,
and finally of the empirical spectral repartition function.
LA - eng
KW - Large deviations; Gaussian processes; quadratic forms; Toeplitz matrices.; Toeplitz matrices
UR - http://eudml.org/doc/116583
ER -
References
top- Azencott R. and Dacunha-Castelle D., Séries d'observations irrégulières. Masson (1984).
- Bahadur R. and Ranga Rao R., On deviations of the sample mean. Ann. Math. Statist.31 (1960) 1015-1027.
- Barndoff-Nielsen O.E. and Cox D.R., Asymptotic techniques for uses in statistics. Chapman and Hall, Londres (1989).
- Barone P., Gigli A. and Piccioni M., Optimal importance sampling for some quadratic forms of A.R.M.A. processes. IEEE Trans. Inform. Theory41 (1995) 1834-1844.
- Basor E., A localization theorem for Toeplitz determinants. Indiana Univ. Math. J.28 (1979) 975-983.
- Basor E., Asymptotic formulas for Toeplitz and Wiener-Hopf operators. Integral Equations Operator Theory5 (1982) 659-665.
- Bercu B., Gamboa F. and Rouault A., Large deviations for quadratic forms of stationary Gaussian processes. Stochastic Process. Appl.71 (1997) 75-90.
- Book S.A., Large deviation probabilities for weighted sums. Ann. Math. Statist.43 (1972) 1221-1234.
- Bottcher A. and Silbermann. Analysis of Toeplitz operators. Springer, Berlin (1990).
- Bouaziz M., Testing Gaussian sequences and asymptotic inversion of Toeplitz operators. Probab. Math. Statist.14 (1993) 207-222.
- Bryc W. and Dembo A., Large deviations for quadratic functionals of Gaussian processes. J. Theoret. Probab.10 (1997) 307-332.
- Bryc W. and Smolenski W., On large deviation principle for a quadratic functional of the autoregressive process. Statist. Probab. Lett.17 (1993) 281-285.
- Bucklew J.A., Large deviations techniques in decision, simulation, and estimation. Wiley (1990).
- Bucklew J. and Sadowsky J., A contribution to the theory of Chernoff bounds. IEEE Trans. Inform. Theory39 (1993) 249-254.
- Coursol J. and Dacunha-Castelle D., Sur la formule de Chernoff pour deux processus gaussiens stationnaires. C. R. Acad. Sci.Sér. I Math.288 (1979) 769-770.
- Cramér H., Random variables and probability distributions. Cambridge University Press (1970).
- Dacunha-Castelle D., Remarque sur l'étude asymptotique du rapport de vraisemblance de deux processus gaussiens. C. R. Acad. Sci.Sér. I Math.288 (1979) 225-228.
- Dembo A. and Zeitouni O., Large deviations techniques and applications. Jones and Barblett Pub. Boston (1993).
- Esseen C., Fourier analysis of distribution functions. Acta Math.77 (1945) 1-25.
- Gamboa F. and Gassiat E., Sets of superresolution and the maximum entropy method on the mean. SIAM J. Math. Anal.27 (1996) 1129-1152.
- Gamboa F. and Gassiat E., Bayesian methods for ill posed problems. Ann. Statist.25 (1997) 328-350.
- Golinskii B. and Ibragimov I., On Szegös limit theorem. Math. USSR- Izv.5 (1971) 421-444.
- Grenander V. and Szegö G., Toeplitz forms and their applications. University of California Press (1958).
- Guyon X., Random fields on a network/ modeling, statistics and applications. Springer (1995).
- Hartwig R.E. and Fisher M.E., Asymptotic behavior of Toeplitz matrices and determinants. Arch. Rational Mech. Anal.32 (1969) 190-225.
- Howland J., Trace class Hankel operators. Quart. J. Math. Oxford Ser. (2)22 (1971) 147-159.
- Jensen J.L., Saddlepoint Approximations. Oxford Statist. Sci. Ser. 16 (1995).
- Johansson K., On Szegös asymptotic formula for Toeplitz determinants and generalizations. Bull. Sci. Math.112 (1988) 257-304.
- Lavielle M., Detection of changes in the spectrum of a multidimensional process. IEEE Trans. Signal Process.42 (1993) 742-749.
- Lehmann E.L., Testing statistical hypotheses. John Wiley and Sons, New-York (1959).
- Rudin W., Real and complex analysis. McGraw Hill International Editions (1987).
- Taniguchi M., Higher order asymptotic theory for time series analysis. Springer, Berlin (1991).
- Widom H., On the limit block Toeplitz determinants. Proc. Amer. Math. Soc.50 (1975) 167-173.
- Widom H., Asymptotic behavior of block Toeplitz matrices and determinants II. Adv. Math. 21 (1976).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.