Continuity of the uniform rotundity modulus relative to linear subspaces
Manuel Fernández; Isidro Palacios
Commentationes Mathematicae Universitatis Carolinae (1997)
- Volume: 38, Issue: 2, page 273-277
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topFernández, Manuel, and Palacios, Isidro. "Continuity of the uniform rotundity modulus relative to linear subspaces." Commentationes Mathematicae Universitatis Carolinae 38.2 (1997): 273-277. <http://eudml.org/doc/248045>.
@article{Fernández1997,
	abstract = {We prove the continuity of the rotundity modulus relative to linear subspaces of normed spaces. As a consequence we reduce the study of uniform rotundity relative to linear subspaces to the study of the same property relative to closed linear subspaces of Banach spaces.},
	author = {Fernández, Manuel, Palacios, Isidro},
	journal = {Commentationes Mathematicae Universitatis Carolinae},
	keywords = {uniform rotundity; Banach space; modulus of rotundity relative to a subspace; Hausdorff semimetric},
	language = {eng},
	number = {2},
	pages = {273-277},
	publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
	title = {Continuity of the uniform rotundity modulus relative to linear subspaces},
	url = {http://eudml.org/doc/248045},
	volume = {38},
	year = {1997},
}
TY  - JOUR
AU  - Fernández, Manuel
AU  - Palacios, Isidro
TI  - Continuity of the uniform rotundity modulus relative to linear subspaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1997
PB  - Charles University in Prague, Faculty of Mathematics and Physics
VL  - 38
IS  - 2
SP  - 273
EP  - 277
AB  - We prove the continuity of the rotundity modulus relative to linear subspaces of normed spaces. As a consequence we reduce the study of uniform rotundity relative to linear subspaces to the study of the same property relative to closed linear subspaces of Banach spaces.
LA  - eng
KW  - uniform rotundity; Banach space; modulus of rotundity relative to a subspace; Hausdorff semimetric
UR  - http://eudml.org/doc/248045
ER  - 
References
top- Clarkson J.A., Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414. (1936) Zbl0015.35604MR1501880
- Fakhoury H., Directions d'uniform convexité dans un space normé, Séminaire Choquet, 14 anné, No. 6 (1974).
- Fernández M., Palacios I., Relative rotundity in , Arch. Math. (Basel) 65 (1995), 61-68. (1995) MR1336225
- Fernández M., Palacios I., Directional uniform rotundity in spaces of essentially bounded vector functions, to appear in Proc. Amer. Math. Soc. MR1350942
- Garkavi A.L., The best possible net and the best possible cross-section of a set in a normed space, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 87-106 Amer. Math. Soc. Transl. Ser. 2 39 (1964), 111-132. (1964) MR0136969
- Goebel K., Kirk W.A., Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics No. 28, Cambridge Univ. Press, Cambridge, MA, 1990. MR1074005
- Kamińska A., Turett B., Some remarks on moduli of rotundity in Banach spaces, Acad. Scien. Math. Vol. 36, No. 5-6, 1988. MR1101665
- Lindenstrauss J., Tzafriri L., Classical Banach Space II, Springer-Verlag, Berlin-Heidelberg-New York, 1979. MR0540367
- Ullán A., Módulos de Convexidad y Lisura en Espacios Normados, Publ. Dep. Matemáticas Univ. Extremadura, No. 27, Badajoz, 1991. MR1174971
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 