# Noncommutative algebraic geometry: From pi-algebras to quantum groups.

Bulletin of the Belgian Mathematical Society - Simon Stevin (1997)

- Volume: 4, Issue: 5, page 557-588
- ISSN: 1370-1444

## Access Full Article

top## How to cite

topVerschoren, A., and Willaert, L.. "Noncommutative algebraic geometry: From pi-algebras to quantum groups.." Bulletin of the Belgian Mathematical Society - Simon Stevin 4.5 (1997): 557-588. <http://eudml.org/doc/120203>.

@article{Verschoren1997,

author = {Verschoren, A., Willaert, L.},

journal = {Bulletin of the Belgian Mathematical Society - Simon Stevin},

keywords = {noncommutative algebraic geometry; algebras satisfying a polynomial identity; quantum groups; schematic algebras; regular algebras},

language = {eng},

number = {5},

pages = {557-588},

publisher = {Société Mathématique de Belgique - Belgisch Wiskundig Genootschap},

title = {Noncommutative algebraic geometry: From pi-algebras to quantum groups.},

url = {http://eudml.org/doc/120203},

volume = {4},

year = {1997},

}

TY - JOUR

AU - Verschoren, A.

AU - Willaert, L.

TI - Noncommutative algebraic geometry: From pi-algebras to quantum groups.

JO - Bulletin of the Belgian Mathematical Society - Simon Stevin

PY - 1997

PB - Société Mathématique de Belgique - Belgisch Wiskundig Genootschap

VL - 4

IS - 5

SP - 557

EP - 588

LA - eng

KW - noncommutative algebraic geometry; algebras satisfying a polynomial identity; quantum groups; schematic algebras; regular algebras

UR - http://eudml.org/doc/120203

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.