Noncommutative algebraic geometry: From pi-algebras to quantum groups.
Bulletin of the Belgian Mathematical Society - Simon Stevin (1997)
- Volume: 4, Issue: 5, page 557-588
- ISSN: 1370-1444
Access Full Article
topHow to cite
topVerschoren, A., and Willaert, L.. "Noncommutative algebraic geometry: From pi-algebras to quantum groups.." Bulletin of the Belgian Mathematical Society - Simon Stevin 4.5 (1997): 557-588. <http://eudml.org/doc/120203>.
@article{Verschoren1997,
author = {Verschoren, A., Willaert, L.},
journal = {Bulletin of the Belgian Mathematical Society - Simon Stevin},
keywords = {noncommutative algebraic geometry; algebras satisfying a polynomial identity; quantum groups; schematic algebras; regular algebras},
language = {eng},
number = {5},
pages = {557-588},
publisher = {Société Mathématique de Belgique - Belgisch Wiskundig Genootschap},
title = {Noncommutative algebraic geometry: From pi-algebras to quantum groups.},
url = {http://eudml.org/doc/120203},
volume = {4},
year = {1997},
}
TY - JOUR
AU - Verschoren, A.
AU - Willaert, L.
TI - Noncommutative algebraic geometry: From pi-algebras to quantum groups.
JO - Bulletin of the Belgian Mathematical Society - Simon Stevin
PY - 1997
PB - Société Mathématique de Belgique - Belgisch Wiskundig Genootschap
VL - 4
IS - 5
SP - 557
EP - 588
LA - eng
KW - noncommutative algebraic geometry; algebras satisfying a polynomial identity; quantum groups; schematic algebras; regular algebras
UR - http://eudml.org/doc/120203
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.