Striction line on a higher-dimensional generalization of a ruled surface

Miloslav Jůza

Czechoslovak Mathematical Journal (1962)

  • Volume: 12, Issue: 2, page 243-250
  • ISSN: 0011-4642

How to cite

top

Jůza, Miloslav. "Ligne de striction sur une généralisation à plusieurs dimensions d'une surface réglée." Czechoslovak Mathematical Journal 12.2 (1962): 243-250. <http://eudml.org/doc/12123>.

@article{Jůza1962,
author = {Jůza, Miloslav},
journal = {Czechoslovak Mathematical Journal},
keywords = {differential geometric Euclidean spaces},
language = {fre},
number = {2},
pages = {243-250},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ligne de striction sur une généralisation à plusieurs dimensions d'une surface réglée},
url = {http://eudml.org/doc/12123},
volume = {12},
year = {1962},
}

TY - JOUR
AU - Jůza, Miloslav
TI - Ligne de striction sur une généralisation à plusieurs dimensions d'une surface réglée
JO - Czechoslovak Mathematical Journal
PY - 1962
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 12
IS - 2
SP - 243
EP - 250
LA - fre
KW - differential geometric Euclidean spaces
UR - http://eudml.org/doc/12123
ER -

Citations in EuDML Documents

top
  1. Miloslav Jůza, Le système complet d'invariants d'un monosystème à trois dimensions dans L'espace euclidien à cinq dimensions
  2. Anna Jůzová, Eukleidovské invarianty monosystémů
  3. Charles Thas, Parameters of distribution of ( n + 1 ) -dimensional monosystems in the Euclidean space R 2 n + 1
  4. Luděk Granát, Metrische Eigenschaften der einparametrigen Systeme von linearen Räumen der Dimension k im Euklidischen Raume E n
  5. Luděk Granát, Metrické vlastnosti nerozvinutelných monosystémů dimense n + 1 v eukleidovském prostoru E 2 n + 1
  6. Luděk Granát, Metrische Eigenschaften der nichtabwickelbaren Monosysteme der Dimension n + 1 im Euklidischen Raume E 2 n + 1 (Vorläufige Mitteilung)
  7. Luděk Granát, Metrische Eigenschaften einparametrischer Systeme von linearen Räumen der Dimension k im Euklidischen Raume E n (Vorläufige Mitteilungen)

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.