Semi-groups of positive contraction operators

Ralph S. Phillips

Czechoslovak Mathematical Journal (1962)

  • Volume: 12, Issue: 2, page 294-313
  • ISSN: 0011-4642

How to cite

top

Phillips, Ralph S.. "Semi-groups of positive contraction operators." Czechoslovak Mathematical Journal 12.2 (1962): 294-313. <http://eudml.org/doc/12127>.

@article{Phillips1962,
author = {Phillips, Ralph S.},
journal = {Czechoslovak Mathematical Journal},
keywords = {functional analysis},
language = {eng},
number = {2},
pages = {294-313},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Semi-groups of positive contraction operators},
url = {http://eudml.org/doc/12127},
volume = {12},
year = {1962},
}

TY - JOUR
AU - Phillips, Ralph S.
TI - Semi-groups of positive contraction operators
JO - Czechoslovak Mathematical Journal
PY - 1962
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 12
IS - 2
SP - 294
EP - 313
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/12127
ER -

References

top
  1. Garrett Birkhoff, Lattice theory, American Math. Soc. Coll. Publ. vol. 25, 1948. (1948) MR0029876
  2. W. Feller, 10.1090/S0002-9947-1940-0002697-3, Trans. Amer. Math. Soc., vol. 48, 1940, 488-515. (1940) Zbl0025.34704MR0002697DOI10.1090/S0002-9947-1940-0002697-3
  3. W. Feller, 10.2307/1970064, Annals of Math. (2) vol. 65, 1957, 527-570. (1957) Zbl0084.35503MR0090928DOI10.2307/1970064
  4. E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Coll. Publ., vol. 31, 1957. (1957) MR0089373
  5. W. B. Jurkat, On semi-groups of positive matrices, Parts I and II, Scripta Math., vol. 24, 1959, 123-131 and 207-218. (1959) Zbl0091.13002MR0121833
  6. S. Karlin, J. L. McGregor, 10.1090/S0002-9947-1957-0091566-1, Trans. Amer. Math. Soc., vol. 85, 1957, 489-546. (1957) Zbl0091.13801MR0091566DOI10.1090/S0002-9947-1957-0091566-1
  7. Tosio Kato, On semi-groups generated by Kolmogoroff's differential equations, Jr. Math. Soc. of Japan, vol. 6, 1954, 1 - 15. (1954) MR0062343
  8. David G. Kendall, Unitary dilations of one-parameter semi-groups of Markov transition operators, and the corresponding integral representations for Markov processes with a countable infinity of states, Proc. London Math. Soc., vol. 9, 1959, 417 - 431. (1959) MR0116390
  9. M. G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications, Recueil. Math., vol. 20, 1947, 431 - 495. (1947) Zbl0029.14103MR0024574
  10. W. Ledermann, G. E. H. Reuter, On differential equations for the transition probabilities of Markov processes with enumerably many states, Proc. Cambridge Phil. Soc., vol. 49, 1953, 247-262. (1953) MR0053343
  11. G. Lumer, R. S. Phillips, 10.2140/pjm.1961.11.679, Pacific Jr. of Math., vol. 11, 1961, 679-698. (1961) MR0132403DOI10.2140/pjm.1961.11.679
  12. R. S. Phillips, 10.1090/S0002-9947-1959-0104919-1, Trans. Amer. Math. Soc., vol. 90, 1959, 193-254. (1959) MR0104919DOI10.1090/S0002-9947-1959-0104919-1
  13. R. S. Phillips, The extension of dual subspaces invariant under an algebra, Proc. of the International Symposium on Linear Spaces, Israel 1960, 366-398. (1960) MR0133686
  14. G. E. H. Reuter, Denumerable Markov processes and the associated contraction semi-groups on l 1 , Acta Math., vol. 97, 1957, 1 - 46. (1957) MR0102123
  15. G. E. H. Reuter, Denumerable Markov processes. II, Jr. London Math. Soc., vol. 34, 1959, 81-91. (1959) Zbl0089.13803MR0102124

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.