On convergence spaces and their sequential envelopes

Josef Novák

Czechoslovak Mathematical Journal (1965)

  • Volume: 15, Issue: 1, page 74-100
  • ISSN: 0011-4642

How to cite

top

Novák, Josef. "On convergence spaces and their sequential envelopes." Czechoslovak Mathematical Journal 15.1 (1965): 74-100. <http://eudml.org/doc/12251>.

@article{Novák1965,
author = {Novák, Josef},
journal = {Czechoslovak Mathematical Journal},
keywords = {topology},
language = {eng},
number = {1},
pages = {74-100},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On convergence spaces and their sequential envelopes},
url = {http://eudml.org/doc/12251},
volume = {15},
year = {1965},
}

TY - JOUR
AU - Novák, Josef
TI - On convergence spaces and their sequential envelopes
JO - Czechoslovak Mathematical Journal
PY - 1965
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 15
IS - 1
SP - 74
EP - 100
LA - eng
KW - topology
UR - http://eudml.org/doc/12251
ER -

References

top
  1. P. Alexandroff, P. Ur, sohn, Une condition nécessaire et suffisante pour qu’une classe ( L ) soit une classe ( D ), C. R. Acad. Sci. Paris, 177 (1923), 1274. (1923) 
  2. E. Čech, Topologické prostory, Praha (1959). (1959) MR0104205
  3. M. Fréchet, 10.1007/BF03018603, Thèse, Paris 1906, et. Rend. Circ. Mat. Palermo 22 (1906). (1906) DOI10.1007/BF03018603
  4. M. Fréchet, Sur la notion de voisinage dans les ensembles abstraits, Bull. Sci. Math. 42 (1918), p. 138-156. (1918) 
  5. F. Hausdorff, Gestufte Räume, Fundam. Math. 25 (1935), p. 486-502. (1935) Zbl0012.42103
  6. С. Kuratowski, Topologie I, Warszawa (1948), p. 88. (1948) Zbl0041.09603
  7. J. Novák, Sur les espaces ( L ) et sur les produits cartésiens ( L ), Publ. Fac. Sciences Univ. Masaryk, Brno, fasc. 273 (1939). (1939) Zbl0022.17303
  8. J. Novák, Regulární prostor, na němž je každá spojitá funkce konstantní, Časopis pro pěst. mat. fys. 73 (1948), p. 58-68. (1948) MR0028576
  9. J. Novák, Die Topologie der Mengensysteme, Atti del sesto congresso dell Unione matematica italiana Napoli 1959, Roma 1960, 460-462. (1959) 
  10. J. Novák, On the sequential envelope, General Topology, Proc. of the Symp. Prague 1961, Praha 1962, 292-294. (1961) MR0175082
  11. J. Novák, On a topological relation between a σ -algebra 𝐀 of sets and the system of all 𝐀 -measurable functions, Czech. Math. Journ. 14 (89) 1964, p. 267-270. (1964) MR0165062
  12. J. Novák, N. Novotný, On the convergence in σ -algebras of point-sets, Czech. Math. Journ. 3 (78) 1953, p. 291-296. (1953) MR0060572
  13. J. Novák, L. Mišík, О L-priestoroch spojitých funkcií, Matematicko-fyzikálný sborník 1 (1951), p. 1-17. (1951) 
  14. W. Sierpiński, Hypothèse du continu, Warszawa (1934), p. 145. (1934) 
  15. V. Trnková, Non F-topologie, Thesis. Praha (1961). (1961) 

Citations in EuDML Documents

top
  1. Roman Frič, On plane topologies with high sequential order
  2. Josef Novák, On convergence groups
  3. Mark Schroder, Arrows in the “finite product theorem for certain epireflections'” of R. Frič and D. C. Kent
  4. Igor Zuzčák, Generalized topological spaces
  5. Josef Novák, On sequential envelopes defined by means of certain classes of continuous functions
  6. Roman Frič, A note on Fréchet spaces
  7. Ladislav Mišík, Sequential completeness and { 0 , 1 } -sequential completeness are different
  8. Karel Wichterle, On 𝔅 -convergence spaces
  9. Václav Koutník, On sequentially regular convergence spaces
  10. Roman Frič, Václav Koutník, Sequentially complete spaces

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.