On convergence spaces and their sequential envelopes
Czechoslovak Mathematical Journal (1965)
- Volume: 15, Issue: 1, page 74-100
- ISSN: 0011-4642
Access Full Article
topHow to cite
topReferences
top- P. Alexandroff, P. Ur, sohn, Une condition nécessaire et suffisante pour qu’une classe () soit une classe (), C. R. Acad. Sci. Paris, 177 (1923), 1274. (1923)
- E. Čech, Topologické prostory, Praha (1959). (1959) MR0104205
- M. Fréchet, 10.1007/BF03018603, Thèse, Paris 1906, et. Rend. Circ. Mat. Palermo 22 (1906). (1906) DOI10.1007/BF03018603
- M. Fréchet, Sur la notion de voisinage dans les ensembles abstraits, Bull. Sci. Math. 42 (1918), p. 138-156. (1918)
- F. Hausdorff, 10.4064/fm-25-1-486-502, Fundam. Math. 25 (1935), p. 486-502. (1935) Zbl0012.42103DOI10.4064/fm-25-1-486-502
- С. Kuratowski, Topologie I, Warszawa (1948), p. 88. (1948) Zbl0041.09603
- J. Novák, Sur les espaces () et sur les produits cartésiens (), Publ. Fac. Sciences Univ. Masaryk, Brno, fasc. 273 (1939). (1939) Zbl0022.17303
- J. Novák, Regulární prostor, na němž je každá spojitá funkce konstantní, Časopis pro pěst. mat. fys. 73 (1948), p. 58-68. (1948) MR0028576
- J. Novák, Die Topologie der Mengensysteme, Atti del sesto congresso dell Unione matematica italiana Napoli 1959, Roma 1960, 460-462. (1959)
- J. Novák, On the sequential envelope, General Topology, Proc. of the Symp. Prague 1961, Praha 1962, 292-294. (1961) MR0175082
- J. Novák, On a topological relation between a -algebra of sets and the system of all -measurable functions, Czech. Math. Journ. 14 (89) 1964, p. 267-270. (1964) MR0165062
- J. Novák, N. Novotný, On the convergence in -algebras of point-sets, Czech. Math. Journ. 3 (78) 1953, p. 291-296. (1953) MR0060572
- J. Novák, L. Mišík, О L-priestoroch spojitých funkcií, Matematicko-fyzikálný sborník 1 (1951), p. 1-17. (1951)
- W. Sierpiński, Hypothèse du continu, Warszawa (1934), p. 145. (1934)
- V. Trnková, Non F-topologie, Thesis. Praha (1961). (1961)
Citations in EuDML Documents
top- Roman Frič, On plane topologies with high sequential order
- Josef Novák, On convergence groups
- Igor Zuzčák, Generalized topological spaces
- Mark Schroder, Arrows in the “finite product theorem for certain epireflections'” of R. Frič and D. C. Kent
- Josef Novák, On sequential envelopes defined by means of certain classes of continuous functions
- Roman Frič, A note on Fréchet spaces
- Karel Wichterle, On -convergence spaces
- Ladislav Mišík, Sequential completeness and -sequential completeness are different
- Roman Frič, Václav Koutník, Sequentially complete spaces
- Roman Frič, On -sequentially regular spaces