The Sorgenfrey topology is a join of orderable topologies
Czechoslovak Mathematical Journal (1973)
- Volume: 23, Issue: 3, page 402-403
- ISSN: 0011-4642
Access Full Article
topHow to cite
topMeyer, Paul R.. "The Sorgenfrey topology is a join of orderable topologies." Czechoslovak Mathematical Journal 23.3 (1973): 402-403. <http://eudml.org/doc/12735>.
@article{Meyer1973,
author = {Meyer, Paul R.},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {3},
pages = {402-403},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Sorgenfrey topology is a join of orderable topologies},
url = {http://eudml.org/doc/12735},
volume = {23},
year = {1973},
}
TY - JOUR
AU - Meyer, Paul R.
TI - The Sorgenfrey topology is a join of orderable topologies
JO - Czechoslovak Mathematical Journal
PY - 1973
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 23
IS - 3
SP - 402
EP - 403
LA - eng
UR - http://eudml.org/doc/12735
ER -
References
top- E. Čech, Topological spaces, ČSAV, Prague, 1966. MR 35 # 2254. (1966) MR0211373
- H. Kok, On conditions equivalent to the orderability of a connected space, Nieuw Arch. Wiskunde (3), 18 (1970), 250-270. (1970) Zbl0202.21803MR0300249
- D. J. Lutzer, A metrization theorem for linearly orderable spaces, Proc. Amer. Math. Soc. 22 (1969), 557-558. MR 40 # 2012. (1969) Zbl0177.50703MR0248761
- P. R. Meyer, On total orderings in topology, Third Prague Symp. on general topology, 1971, 301-396. (1971) MR0388314
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.