Positive functions from 𝒮 -indecomposable semigroups into partially ordered sets

Mohan S. Putcha

Czechoslovak Mathematical Journal (1976)

  • Volume: 26, Issue: 1, page 161-170
  • ISSN: 0011-4642

How to cite

top

Putcha, Mohan S.. "Positive functions from $\mathcal {S}$-indecomposable semigroups into partially ordered sets." Czechoslovak Mathematical Journal 26.1 (1976): 161-170. <http://eudml.org/doc/12924>.

@article{Putcha1976,
author = {Putcha, Mohan S.},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {1},
pages = {161-170},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Positive functions from $\mathcal \{S\}$-indecomposable semigroups into partially ordered sets},
url = {http://eudml.org/doc/12924},
volume = {26},
year = {1976},
}

TY - JOUR
AU - Putcha, Mohan S.
TI - Positive functions from $\mathcal {S}$-indecomposable semigroups into partially ordered sets
JO - Czechoslovak Mathematical Journal
PY - 1976
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 26
IS - 1
SP - 161
EP - 170
LA - eng
UR - http://eudml.org/doc/12924
ER -

References

top
  1. M. Petrich, 10.1007/BF01114879, Math. Z. 85 (1964), 68-82. (1964) Zbl0124.25801MR0167552DOI10.1007/BF01114879
  2. M. Petrich, Introduction to semigroups, Merrill Publishing Company, 1973. (1973) Zbl0321.20037MR0393206
  3. M. S. Putcha, 10.1007/BF02389104, Semigroup Forum, 6 (1973), 12-34. (1973) Zbl0256.20074MR0369582DOI10.1007/BF02389104
  4. M. S. Putcha, 10.1090/S0002-9947-1974-0338233-4, Trans. Amer. Math. Soc. 189 (1974), 93-106. (1974) Zbl0282.20055MR0338233DOI10.1090/S0002-9947-1974-0338233-4
  5. M. S. Putcha, Semigroups in which a power of each element lies in a subgroup, Semigroup Forum, 5 (1973), 354-361. (1973) Zbl0259.20052MR0316613
  6. M. S. Putcha, 10.1016/0012-365X(75)90009-6, Discrete Math. 11(1975), 173-185. (1975) Zbl0315.05114MR0360885DOI10.1016/0012-365X(75)90009-6
  7. M. S. Putcha, 10.1215/S0012-7094-73-04079-9, Duke Math. J. 40 (1973), 857-869. (1973) Zbl0281.20057MR0338232DOI10.1215/S0012-7094-73-04079-9
  8. T. Tamura, The theory of construction of finite semigroups I., Osaka Math. J. 8 (1956), 243-261. (1956) Zbl0073.01003MR0083497
  9. T. Tamura, Another proof of a theorem concerning the greatest semilattice decomposition of a semigroup, Proc. Japan. Acad. 40 (1964), 117-1^0. (1964) Zbl0135.04001MR0179282
  10. T. Tamura, 10.1002/mana.19750680115, Math. Nachr. 68(1975), 201-220. (1975) Zbl0325.06002MR0387462DOI10.1002/mana.19750680115
  11. T. Tamura, 10.1007/BF02570795, Semigroup Forum, 4 (1972), 255-261. (1972) Zbl0261.20058MR0307990DOI10.1007/BF02570795
  12. T. Tamura, Semilattice congruences viewed from quasi-orders, Proc. A.M.S. 41 (1973), 75-79. (1973) Zbl0275.20106MR0333048
  13. T. Tamura, 10.1007/BF02572900, Semigroup Forum, 5 (1973), 277-282. (1973) Zbl0262.20072MR0320193DOI10.1007/BF02572900
  14. B. M. Schein, On certain classes of semigroups of binary relations, (in Russian), Sibirsk. Mat. Žurn. 6 (1965), 616-635. (1965) MR0193170

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.