L p - theory for a class of singular elliptic differential operators, II

Hans Kretschmer; Hans Triebel

Czechoslovak Mathematical Journal (1976)

  • Volume: 26, Issue: 3, page 438-447
  • ISSN: 0011-4642

How to cite

top

Kretschmer, Hans, and Triebel, Hans. "$L_p$- theory for a class of singular elliptic differential operators, II." Czechoslovak Mathematical Journal 26.3 (1976): 438-447. <http://eudml.org/doc/12956>.

@article{Kretschmer1976,
author = {Kretschmer, Hans, Triebel, Hans},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {3},
pages = {438-447},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$L_p$- theory for a class of singular elliptic differential operators, II},
url = {http://eudml.org/doc/12956},
volume = {26},
year = {1976},
}

TY - JOUR
AU - Kretschmer, Hans
AU - Triebel, Hans
TI - $L_p$- theory for a class of singular elliptic differential operators, II
JO - Czechoslovak Mathematical Journal
PY - 1976
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 26
IS - 3
SP - 438
EP - 447
LA - eng
UR - http://eudml.org/doc/12956
ER -

References

top
  1. S. Agmon, 10.1002/cpa.3160150203, Comm. Pure Appl. Math. 15 (1962), 119-147. (1962) Zbl0109.32701MR0147774DOI10.1002/cpa.3160150203
  2. И. Ц. Гохберг M. Г. Крейи (I. С. Gochberg M. G. Krejn), Введение в теорию линейных несамосопряженных операторов в гильбертовом пространстве, Изд. „Наука", Москва 1965. (There exists an English translation of the book.) (1965) 
  3. F. Riesz B. Sz.-Nagy, Vorlesungen über Funktionalanalysis, VEB Deutscher Verl. d. Wissenschaften Berlin 1968 (2. Aufl.). (1968) Zbl0176.42401
  4. H. Triebel, 10.1007/BF01425385, Inventiones Math. 4 (1967), 275 - 293. (1967) Zbl0165.14501MR0220055DOI10.1007/BF01425385
  5. H. Triebel, Höhere Analysis, VEB Deutscher Verlag d. Wissenschaften. Berlin 1972. (1972) Zbl0257.47001MR0360061
  6. H. Triebel, 10.1002/mana.19730580106, Math. Nachrichten 58 (1973), 63-86. (1973) Zbl0233.46049MR0361760DOI10.1002/mana.19730580106
  7. H. Triebel, L p -theory for a class of singular elliptic differential operators, Czech. Math. J. 23 (1973), 525-541. (1973) MR0333435

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.