- theory for a class of singular elliptic differential operators, II
Czechoslovak Mathematical Journal (1976)
- Volume: 26, Issue: 3, page 438-447
- ISSN: 0011-4642
Access Full Article
topHow to cite
topKretschmer, Hans, and Triebel, Hans. "$L_p$- theory for a class of singular elliptic differential operators, II." Czechoslovak Mathematical Journal 26.3 (1976): 438-447. <http://eudml.org/doc/12956>.
@article{Kretschmer1976,
author = {Kretschmer, Hans, Triebel, Hans},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {3},
pages = {438-447},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$L_p$- theory for a class of singular elliptic differential operators, II},
url = {http://eudml.org/doc/12956},
volume = {26},
year = {1976},
}
TY - JOUR
AU - Kretschmer, Hans
AU - Triebel, Hans
TI - $L_p$- theory for a class of singular elliptic differential operators, II
JO - Czechoslovak Mathematical Journal
PY - 1976
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 26
IS - 3
SP - 438
EP - 447
LA - eng
UR - http://eudml.org/doc/12956
ER -
References
top- S. Agmon, 10.1002/cpa.3160150203, Comm. Pure Appl. Math. 15 (1962), 119-147. (1962) Zbl0109.32701MR0147774DOI10.1002/cpa.3160150203
- И. Ц. Гохберг M. Г. Крейи (I. С. Gochberg M. G. Krejn), Введение в теорию линейных несамосопряженных операторов в гильбертовом пространстве, Изд. „Наука", Москва 1965. (There exists an English translation of the book.) (1965)
- F. Riesz B. Sz.-Nagy, Vorlesungen über Funktionalanalysis, VEB Deutscher Verl. d. Wissenschaften Berlin 1968 (2. Aufl.). (1968) Zbl0176.42401
- H. Triebel, 10.1007/BF01425385, Inventiones Math. 4 (1967), 275 - 293. (1967) Zbl0165.14501MR0220055DOI10.1007/BF01425385
- H. Triebel, Höhere Analysis, VEB Deutscher Verlag d. Wissenschaften. Berlin 1972. (1972) Zbl0257.47001MR0360061
- H. Triebel, 10.1002/mana.19730580106, Math. Nachrichten 58 (1973), 63-86. (1973) Zbl0233.46049MR0361760DOI10.1002/mana.19730580106
- H. Triebel, -theory for a class of singular elliptic differential operators, Czech. Math. J. 23 (1973), 525-541. (1973) MR0333435
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.