Generalization of some known properties of Cantor set

Dilip Kumar Ganguly

Czechoslovak Mathematical Journal (1978)

  • Volume: 28, Issue: 3, page 369-372
  • ISSN: 0011-4642

How to cite

top

Ganguly, Dilip Kumar. "Generalization of some known properties of Cantor set." Czechoslovak Mathematical Journal 28.3 (1978): 369-372. <http://eudml.org/doc/13071>.

@article{Ganguly1978,
author = {Ganguly, Dilip Kumar},
journal = {Czechoslovak Mathematical Journal},
keywords = {Cantor's Ternary Set; Point of Trisection; Kinney's Functions},
language = {eng},
number = {3},
pages = {369-372},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalization of some known properties of Cantor set},
url = {http://eudml.org/doc/13071},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Ganguly, Dilip Kumar
TI - Generalization of some known properties of Cantor set
JO - Czechoslovak Mathematical Journal
PY - 1978
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 28
IS - 3
SP - 369
EP - 372
LA - eng
KW - Cantor's Ternary Set; Point of Trisection; Kinney's Functions
UR - http://eudml.org/doc/13071
ER -

References

top
  1. Bose Majumdar N. C., 10.1080/00029890.1965.11970598, Amer. Math. Monthly 72 (1965), pp. 725-729. (1965) MR0183819DOI10.1080/00029890.1965.11970598
  2. Dasgupta M., On some properties of the Cantor set and the construction of a class of sets with Cantor set properties, Czechoslovak Mathematical Journal 24 (99), 1974 Praha, pp. 416-423. (1974) Zbl0309.28005MR0366673
  3. Ganguly D. K., Bose Majumdar N. C, On some functions connected with Cantor set, Bull. Math, de la See. Sci. Math, de la R. S. R. (to appear). Zbl0368.28001
  4. Kinney J. R., 10.1007/BF02771304, Israel J. Math. 8 (1970), pp. 97- 102. (1970) Zbl0213.07605MR0265534DOI10.1007/BF02771304
  5. Randolph J. F., 10.2307/2303836, Amer. Math. Monthly 47 (1940), pp. 549-551. (1940) MR1524942DOI10.2307/2303836
  6. Steinhaus H., Nowa vlastnose mnogosci G. Cantora, Wektor (1917), pp. 105-107. (1917) 
  7. Šalát T., On the distance set of linear discontinuum I, (Russian), Časopis pro pěstování matematiky 87 (1962), pp. 4-16. (1962) MR0180959
  8. Utz W. R., 10.2307/2306554, Amer. Math. Monthly 58 (1951) pp. 407-408. (1951) Zbl0043.05402MR1527894DOI10.2307/2306554
  9. Hobson E. W., The theorey of function of a real variable and the theory of Fourier series, Vol. I, Dover Publications, Inc. p. 243. 

NotesEmbed ?

top

You must be logged in to post comments.